The Journal of Toxicological Sciences
Online ISSN : 1880-3989
Print ISSN : 0388-1350
ISSN-L : 0388-1350
Original Article
Hydrogen sulfide donor NaHS induces death of alveolar epithelial L2 cells that is associated with cellular shrinkage, transgelin expression and myosin phosphorylation
Yusuke FujiiTakeshi FunakoshiKana UnumaKanako NoritakeToshihiko AkiKoichi Uemura
Author information
JOURNAL FREE ACCESS

2016 Volume 41 Issue 5 Pages 645-654

Details
Abstract

Hydrogen sulfide (H2S) is a highly toxic gaseous molecule that causes death to humans exposed to high concentrations. H2S is absorbed into the body through the alveolar epithelium and other tissues. The aim of this study is to evaluate the molecular mechanism underling acute lung injury caused by the inhalation of high concentrations of H2S. Rat lung epithelium-derived L2 cells were exposed to a H2S donor, NaHS, at concentrations of 2-4 mM for 1-6 hr. NaHS caused shrinkage and death of the cells without caspase activation. An actin-binding protein, transgelin, was identified as one of the NaHS-inducible proteins in the cells. NaHS increased myosin light chain (MLC) phosphorylation, indicating that actomyosin-mediated cellular contractility and/or motility could be increased after NaHS exposure. The administration of ML-7, a myosin light chain kinase (MLCK) inhibitor, accelerated cell death after NaHS exposure. Based on these data, we conclude that the increase in MLC phosphorylation in response to NaHS exposure is a cellular protective reaction against NaHS toxicity. Enhancements in smooth muscle cell properties such as transgelin expression and actomyosin-mediated contractility/motility might be involved in cell survival after NaHS exposure.

Content from these authors
© 2016 The Japanese Society of Toxicology
Previous article Next article
feedback
Top