The Journal of Toxicological Sciences
Online ISSN : 1880-3989
Print ISSN : 0388-1350
ISSN-L : 0388-1350
Original Article
Endoplasmic reticulum stress is involved in 2,4-dichlorophenol-induced hepatotoxicity
Jianbo FuXiaoning ZhangPeng ChenYingmei Zhang
Author information
JOURNAL FREE ACCESS

2016 Volume 41 Issue 6 Pages 745-756

Details
Abstract

2,4-Dichlorophenol (2,4-DCP) is an environmental pollutant exhibiting a wide spectrum of toxic effects. We investigated the toxic effects and potential mechanisms underlying 2,4-DCP-induced hepatotoxicity. In vitro, 2,4-DCP caused hepatotoxicity manifested by a decrease in cell viability and inhibition of colony formation. Bip and CHOP expression was up-regulated at the mRNA and protein levels. Moreover, 2,4-DCP induced eIF2α phosphorylation and Xbp1 mRNA splicing, indicating that endoplasmic reticulum (ER) stress was activated after exposure of HL7702 cells to 2,4-DCP for 12 hr. Furthermore, the mitochondrial membrane potential collapsed and apoptosis was triggered after exposure to 2,4-DCP for 24 hr. In vivo, 2,4-DCP caused histological changes in the liver, and dramatically elevated the serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels of mice. ER stress was also triggered in the liver of mice on days 1 and 3. The ER stress inhibitor TUDCA could partly relieve the liver damage, as indicated by the restoration of serum ALT and AST levels. Taken together, our results demonstrated that ER stress may serve as an early warning mechanism against 2,4-DCP-induced hepatotoxicity, and severe ER stress may lead to apoptosis.

Content from these authors
© 2016 The Japanese Society of Toxicology
Previous article Next article
feedback
Top