The Journal of Toxicological Sciences
Original Article
Effect of dibutyltin on placental and fetal toxicity in rat
Satoshi FurukawaNaho TsujiYoshiyuki KobayashiYoshikazu YamagishiSeigo HayashiMasayoshi AbeYusuke KurodaMasayuki KimuraChisato HayakawaAkihiko Sugiyama
Author information
JOURNALS FREE ACCESS

Volume 42 (2017) Issue 6 Pages 741-753

Details
Download PDF (3303K) Contact us
Abstract

In order to elucidate the effect of chorioallantoic and yolk sac placenta on the embryonic/fetal toxicity in dibutyltin dichloride (DBTCl)-exposed rats, we examined the histopathological changes and the tissue distribution of dibutyltin in the placentas and embryos. DBTCl was orally administered to the groups at doses of 0 mg/kg during gestation days (GD)s 7-9 (control group) and 20 mg/kg during GDs 7-9 (GD7-9 treated group), and GDs 10-12 (GD10-12 treated group). The total fetal mortality was increased, and malformations characterized by craniofacial dysmorphism were detected in the GD7-9 treated group. The embryonic/fetal weight and placental weight showed a decrease in both DBTCl-treated groups. Histologically, some embryos on GD 9.5 in the GD7-9 treated group underwent apoptosis without any changes of yolk sac. In the laser ablation-inductively coupled plasma-mass spectrometry analysis (LA-ICP-MS), tin was detected in the embryo, allantois, yolk sac, ectoplacental cone and decidual mass surrounding the conceptus on GD 9.5 in the GD7-9 treated group. Thus, it is considered that the embryo in this period is specifically sensitive to DBTCl-induced apoptosis, compared with other parts. The chorioallantoic placentas in both DBTCl-treated groups showed the developmental delay and hypoplasia in the fetal parts of placenta, resulting from apoptosis and mitotic inhibition. Thus, it was speculated that the DBTCl-induced malformations and fetal resorption resulted from the apoptosis in the embryo caused by the direct effect of DBTCl. The DBTCl-induced lesions in the chorioallantoic placenta were a non-specific transient developmental retardation in the fetal parts of placenta, leading to intrauterine growth retardation.

Information related to the author
© 2017 The Japanese Society of Toxicology
Previous article Next article

Recently visited articles
feedback
Top