The Journal of Toxicological Sciences
Online ISSN : 1880-3989
Print ISSN : 0388-1350
ISSN-L : 0388-1350
Original Article
Toxicological effects of two metabolites derived from o-toluidine and o-anisidine after 28-day oral administration to rats
Takeshi ToyodaTakuma KobayashiNoriyuki MiyoshiKohei MatsushitaHirotoshi AkaneTomomi MorikawaKumiko Ogawa
著者情報
ジャーナル フリー HTML
電子付録

2022 年 47 巻 11 号 p. 457-466

詳細
抄録

Although both o-toluidine and o-anisidine are known as aromatic amines with bladder carcinogenicity, the specific metabolites involved in carcinogenesis are still unclear. Here, we examined the toxicological effects of head-to-tail dimers of o-toluidine and o-anisidine, 2-methyl-N4-(2-methylphenyl) benzene-1,4-diamine (MMBD) and 2-methoxy-N4-(2-methoxyphenyl) benzene-1,4-diamine (MxMxBD), respectively, in rats. Six-week-old male F344 rats were orally administered MMBD, MxMxBD, o-toluidine, and o-anisidine at a dose of 100 mg/kg/day for 28 days. Rats administered 400 mg/kg o-toluidine and 600 mg/kg/day o-anisidine were set as high-dose groups for comparison. Histopathology and immunohistochemistry for γ-H2AX, a DNA damage biomarker, and bladder stem cell markers, including aldehyde dehydrogenase 1A1 (ALDH1A1), were performed. MMBD and MxMxBD caused different toxicities than their monomers, inducing hepatotoxicity such as vacuolar degeneration but not splenic lesions due to methemoglobinemia. Bladder lesions, including urothelial hyperplasia, were observed in the high-dose o-toluidine and o-anisidine groups, whereas no obvious changes were induced in the low-dose groups or their dimers. Although γ-H2AX formation was significantly increased by o-toluidine and o-anisidine treatment, γ-H2AX formation did not differ among the MMBD, MxMxBD, and control groups. Notably, immunohistochemistry revealed marked increases in ALDH1A1 expression in the bladder urothelium of the MMBD and MxMxBD groups and in the o-toluidine and o-anisidine groups, suggesting that the two dimers may contribute to the bladder carcinogenic effects of o-toluidine and o-anisidine to some extent. The degrees of bladder lesions and γ-H2AX formation did not correlate with the amount of unchanged o-toluidine and o-anisidine in urine, indicating the presence of other metabolites responsible for these findings.

著者関連情報
© 2022 The Japanese Society of Toxicology
前の記事 次の記事
feedback
Top