The Journal of Toxicological Sciences
Online ISSN : 1880-3989
Print ISSN : 0388-1350
ISSN-L : 0388-1350
Original Article
Fetal loss due to Th1-skewed Th1/Th2 balance with increase (not decrease) of regulatory T cells in abortion-prone mouse model
Miho SakakibaraYosuke MaedaKazuichi Nakamura
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2022 Volume 47 Issue 8 Pages 327-336

Details
Abstract

We used an abortion-prone mouse model, generated by mating female CBA/J mice with male DBA/2JJcl mice, to examine the effects of changes in the Th1/Th2 cell ratio and the percentage of regulatory T (Treg) cells on the maintenance of pregnancy. We subcutaneously injected female CBA/J mice once each with 50 μg/mouse of Dermatophagoides farinae (Df) extract and the squalene-based adjuvant (SquA); 10 days later, these mice were mated with male DBA/2JJcl mice. Compared with injection of vehicle or adjuvant, the Df treatment decreased the Th1/Th2 cell ratio and concomitantly increased the percentage of Treg cells in the spleen. In addition, fetal death rates were decreased. We then explored a substance which shifted the Th1/Th2 balance toward Th1 side. We found that 50 μg/mouse of keyhole limpet hemocyanin (KLH) increased the splenic Th1/Th2 cell ratio of nonpregnant female CBA/J mice. We subcutaneously injected female CBA/J mice with KLH and SquA; 10 days later, these mice were mated with male DBA/2JJcl mice. Compared with injection of vehicle or adjuvant, treatment with KLH enhanced the Th1 bias during pregnancy and increased the fetal death rate. The percentage of Treg cells, however, was increased in these KLH-injected pregnant mice contrary to our presumption. All collected data showed strong positive correlation between the Th1/Th2 cell ratio and fetal death rate. The increase in Treg cells independent of effects on the fetal death rate suggests that Treg cells do not necessarily induce maternal tolerance to the fetus but may prevent excessive Th1/Th2 imbalance during pregnancy.

Content from these authors
© 2022 The Japanese Society of Toxicology
Previous article Next article
feedback
Top