日本機械学会論文集A編
Online ISSN : 1884-8338
ISSN-L : 1884-8338
一般論文
面外せん断荷重下における円形介在物内に別種の多層偏心円形介在物が存在する弾性体の解析
宮川 睦巳鈴木 拓雄田宮 高信志村 穣
著者情報
ジャーナル フリー

2013 年 79 巻 804 号 p. 1252-1265

詳細
抄録
In this paper, we derive a general solution for an isotropic elastic medium (matrix) with nonconcentric multilayered circular inclusions. Inner inclusion is perfectly bonded to the outer inclusion. Matrix is infinite extent under anti-plane deformation. These inclusions have different elastic moduli, radii and central points. The matrix is subjected to arbitrary loading, for examples, by uniform anti-plane shear stresses at infinity, as well as a concentrated force , screw dislocation , uniform distributed line load at an arbitrary point. The solution is obtained through iterations of the Möbius transformation as a series with an explicit general term involving the complex potential of the corresponding homogeneous problems. The procedure is referred to as heterogenization. Using these solutions, several numerical examples are presented graphically.
著者関連情報
© 2013 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top