日本機械学会論文集 A編
Online ISSN : 1884-8338
Print ISSN : 0387-5008
大深部岩体における水圧破砕き裂進展挙動の数値シミュレーション法に関する研究
板岡 幹世佐藤 一志橋田 俊之
著者情報
ジャーナル フリー

2001 年 67 巻 661 号 p. 1527-1534

詳細
抄録

Geothermal energy is one of the most environment-conscious resources among the natural resources. Recently, the development of a supercritical geothermal system has been proposed to enhance the geothermal heat extraction. In order to design the supercritical geothermal reservoir whose temperature and pressure conditions exceed the critical point of water, the formation behavior of the geothermal reservoir under the great depth condition has to be examined. In this study, we develop a new numerical analysis code for analyzing the hydraulic fracturing behavior in deep-seated rock mass. This code consists of two parts : "flow analysis" which computes the pressure distribution in the induced crack, and "crack propagation analysis". The former is based on FDM. The later is based on FEM with embedded crack element. In the "crack propagation analysis", the mixed-mode fracture behavior with process zone formation is modeled. A shear dilation is accounted for in the fracture model. The numerical result shows that the crack growth behavior, i.e. the mode of crack propagation changes from mode I to mode II as the depth increases. Under a typical tectonic stress condition, the crack growth mode is dominated by the mode I component above 4-5 km depth, whereas the influence of mode II component increases with increasing the depth. This result may suggest that the current target of supercritical geothermal reservoirs may be formed mainly under the mode I fracture.

著者関連情報
© 社団法人日本機械学会
前の記事 次の記事
feedback
Top