日本機械学会論文集B編
Online ISSN : 1884-8346
ISSN-L : 1884-8346
一般論文
円筒型サイクロンセパレータの粒子分離メカニズム(第2報,粒子追跡の精度検証と粒子運動の詳細検討)
秋山 修加藤 千幸河手 大輔
著者情報
ジャーナル フリー

2012 年 78 巻 795 号 p. 1903-1918

詳細
抄録

Mechanism of particle separation in a cylindrical cyclone separator has been fully clarified by a combined numerical method of large eddy simulation and a particle tracking method. The former resolves all the important vortical structures in the separator while the latter inputs the instantaneous flow fields computed by the LES and computes trajectory of each particle by considering Stokes drag as well as gravity force. Particle collection efficiency predicted by the proposed method has been compared with the experimental data measured for two cylindrical cyclone separators with several sets of particle diameters. The results showed that the collection efficiency has been quantitatively predicted by the proposed method, which confirms that the method can be used for the engineering design of such a cyclone separator. Detailed investigation of the particle trajectories predicted by the present method has clarified the mechanism of particle separation of a cylindrical cyclone separator. Those particles that are successfully collected by the separator move outward in the swirl flow and are collected when the swirl flow changes its direction at the bottom of the separator. The essential mechanism of this particle separation is due to the centrifugal forces acting on the particles. Three types of particle trajectories have been identified for those particles that are exhausted from the cyclone separator together with the swirl flow. More than half of the uncollected particles are trapped by longitudinal vortexes. The unsteady longitudinal vortexes and vortex rope drastically decrease collection efficiency.

著者関連情報
© 2012 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top