Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
Some convergence theorems for asymptotically pseudocontractive mappings
Arif Rafiq
著者情報
ジャーナル フリー

2007 年 30 巻 1 号 p. 74-84

詳細
抄録
Let K be a nonempty closed convex subset of a real Banach space E,T : KK a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with sequence {kn}n ≥ 0 ⊂ [1, ∞), limn → ∞ kn = 1 such that pF(T) = {xK : Tx = x}. Let {αn}n ≥ 0 ⊂ [0,1] be such that ∑n ≥ 0 αn = ∞ and limn → ∞ αn = 0. For arbitrary x0K and {vn}n ≥ 0 in K let {xn}n ≥ 0 be iteratively defined by
xn + 1 = (1 - αn)xn + αn Tnvn, n ≥ 0,
satisfying limn → ∞ ||vn - xn|| = 0. Suppose there exists a strictly increasing function φ : [0, ∞) → [0, ∞), φ (0) = 0 such that
<Tnx - p, j (x - p)> ≤ kn ||x - p||2 - φ (||x - p||), ∀xK.
Then {xn}n ≥ 0 converges strongly to pF (T).
The remark at the end is important.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2007 Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top