Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
Domains of variability of Laurent coefficients and the convex hull for the family of concave univalent functions
Bappaditya BhowmikSaminathan PonnusamyKarl-Joachim Wirths
著者情報
ジャーナル フリー

2007 年 30 巻 3 号 p. 385-393

詳細
抄録
Let D denote the open unit disc and let p ∈ (0,1). We consider the family Co(p) of functions f : D → $¥overline{{¥mathbf C}}$ that satisfy the following conditions:
(i) f is meromorphic in D and has a simple pole at the point p.
(ii) f(0) = f′(0) – 1 = 0.
(iii) f maps D conformally onto a set whose complement with respect to $¥overline{{¥mathbf C}}$ is convex.
We determine the exact domains of variability of some coefficients an (f) of the Laurent expansion
f (z) = $¥sum_{n=-1}^{¥infty}$ an (f)(zp)n, |zp| < 1 − p,
for fCo(p) and certain values of p. Knowledge on these Laurent coefficients is used to disprove a conjecture of the third author on the closed convex hull of Co(p) for certain values of p.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2007 Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top