Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
On the holomorphic invariants for generalized Kähler-Einstein metrics
Yuji Sano
著者情報
ジャーナル フリー

2008 年 31 巻 3 号 p. 431-440

詳細
抄録
In [9], Mabuchi extended the notion of Kähler-Einstein metrics to the case of Fano manifolds with novanishing Futaki invariant. We call them generalized Kähler-Einstein metrics. He defined the holomorphic invariant αM in terms of the extremal Kähler vector field, which is the obstruction for the existence of generalized Kähler-Einstein metrics. The purpose of this short paper is to show that the above obstruction is actually equivalent to the vanishing of the holomorphic invariant of Futaki's type defined by Futaki [4] (see also [8]). As its corollary, we can show that $¥mathbb{CP}^2¥sharp ¥overline{¥mathbb{CP}^2}$ admits generalized Kähler-Einstein metrics by the method using multiplier ideal sheaves in [6].
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2008 Department of Mathematics, Tokyo Institute of Technology
前の記事
feedback
Top