Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
Relative injectivity and flatness of complexes
Bo LuZhongkui Liu
著者情報
ジャーナル フリー

2013 年 36 巻 2 号 p. 343-362

詳細
抄録
A complex C is said to be FR-injective (resp., FR-flat) if Ext1(D,C) = 0 (resp., $\overline{Tor}1 (C,D) = 0) for any finitely represented complex D. We prove that a complex C is FR-injective (resp., FR-flat) if and only if C is exact and Zm(C) is FR-injective (resp., FR-flat) in R-Mod for all mZ. We show that the class of FR-injective complexes is closed under direct limits and the class of FR-flat complexes is closed under direct products over any ring R. We use this result to prove that every complex have FR-flat preenvelopes and FR-injective covers.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2013 Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top