Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
Unit tangent sphere bundles with the Reeb flow invariant Ricci operator
Jong Taek ChoSun Hyang Chun
著者情報
ジャーナル フリー

2017 年 40 巻 1 号 p. 102-116

詳細
抄録
In this paper, we study unit tangent sphere bundles T1M whose Ricci operator $\bar{S}$ is Reeb flow invariant, that is, Lξ$\bar{S}$ = 0. We prove that for a 3-dimensional Riemannian manifold M, T1M satisfies Lξ$\bar{S}$ = 0 if and only if M is of constant curvature 1. Also, we prove that for a 4-dimensional Riemannian manifold M, T1M satisfies Lξ $\bar{S}$ = 0 and ℓ$\bar{S}$ξ = 0 if and only if M is of constant curvature 1 or 2, where ℓ = $\bar{R}$(·,ξ)ξ is the characteristic Jacobi operator.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2017 Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top