Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
Boundary behavior of Kähler-Einstein metric of negative Ricci curvature over quasi-projective manifolds with boundary of general type
Shin Kikuta
著者情報
ジャーナル 認証あり

2021 年 44 巻 1 号 p. 81-114

詳細
抄録

In this paper, we discuss an asymptotic boundary behavior of the complete Kähler-Einstein metric of negative Ricci curvature on a quasi-projective manifold with semiample log-canonical bundle. In particular, we focus our attention on its relations with degeneration of positivity for the log-canonical bundle on the boundary divisor. Based on a pioneering result due to G. Schumacher, a fundamental conjecture about the relations is proposed in this paper. Moreover it is also proved that the conjecture actually holds in the case when the boundary divisor is of general type.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2021 Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top