Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
Logarithmic Harnack inequalities and gradient estimates for nonlinear p-Laplace equations on weighted Riemannian manifolds
Yu-Zhao WangWenlu Wang
著者情報
ジャーナル 認証あり

2023 年 46 巻 1 号 p. 31-50

詳細
抄録

In this paper, we prove the logarithmic Harnack inequalities for Lp-Log-Sobolev function on n-dimensional weighted Riemannian manifolds with m-Bakry-Émery Ricci curvature bounded below by -K (mn, K ≥ 0). Under the assumption of nonnegative m-Bakry-Émery Ricci curvature, we obtain a global Li-Yau type gradient estimate and a Hamilton type estimate for the positive solutions to the weighted parabolic p-Laplace equation with logarithmic nonlinearity. As applications, the corresponding Harnack inequalities are derived.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2023 Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top