Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
On the length spectrums of Riemann surfaces given by generalized Cantor sets
Erina Kinjo
著者情報
ジャーナル 認証あり

2024 年 47 巻 1 号 p. 34-51

詳細
抄録

For a generalized Cantor set E(ω) with respect to a sequence , we consider Riemann surface and metrics on Teichmüller space T(XE(ω)) of XE(ω). If E(ω) = (the middle one-third Cantor set), we find that on , Teichmüller metric dT defines the same topology as that of the length spectrum metric dL. Also, we can easily check that dT does not define the same topology as that of dL on T(XE(ω)) if sup qn = 1. On the other hand, it is not easy to judge whether the metrics define the same topology or not if inf qn = 0. In this paper, we show that the two metrics define different topologies on T(XE(ω)) for some such that inf qn = 0.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2024 Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top