2024 年 47 巻 1 号 p. 52-66
In this paper, we consider linear combinations of harmonic K-quasiregular mappings fj = hj + gi (j = 1, 2) of the class Har(k; φj), where k ∈ [0,1), ||ωfj||∞ = ||g'j/h'j||∞ ≤ k < 1, k = (1 - K)/(1 + K), and φj = hj + eiθgj is a univalent analytic function. We provide sufficient conditions for the linear combinations of mappings in these classes to be univalent and for the image domains to be linearly connected. Furthermore, we consider under which conditions the linear combination f is bi-Lipschitz.
この記事は最新の被引用情報を取得できません。