Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
The derivative of a holomorphic function and estimates of the Poincaré density
Shinji Yamashita
著者情報
ジャーナル フリー

1992 年 15 巻 1 号 p. 102-121

詳細
抄録
Let PG(z) be the Poincaré density of the Poincaré metric PG(z)|dz| in a domain G in the complex plane C such that C{\backslash}G contains at least two points. Let δG(z) be the distance of zG and the boundary of G in C. It is well known that δG(z)PG(z){≤}1 everywhere, and if G is simply connected further, then 1/4{≤}δG(z)PG(z) everywhere. These inequalities have their roots in the classical and general inequalities of A. J. Macintyre, W. Seidel and J. L. Walsh for holomorphic functions defined in the open unit disk D. We prove sharp inequalities for the derivative of a holomorphic function in D, inequalities which, in particular, generalize the classical ones. Applications to PG will be given.
著者関連情報

この記事は最新の被引用情報を取得できません。

© Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top