Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
Monotone discontinuity of lattice operations in a quasilinear harmonic space
Mitsuru Nakai
著者情報
ジャーナル フリー

1996 年 19 巻 2 号 p. 282-292

詳細
抄録
We claim, contrary to the linear case, that the lattice operations among harmonic functions are not necessarily monotone continuous in quasilinear harmonic spaces by showing the existence of a quasilinear harmonic space (X, H) in which there are harmonic functions un in H(X)(n=1, 2, …, ∞) with the following properties: the least harmonic majorant un∨0 and the greatest harmonic minorant un∧0 of un and 0 exist in H(X) for every n=1, 2, …, ∞; the sequence (un)1{≤}n<∞ is increasing and convergent to u on X; the sequence (un∧0)1{≤}n<∞ converges increasingly to a harmonic function strictly less than u∧ 0 on X.
著者関連情報

この記事は最新の被引用情報を取得できません。

© Department of Mathematics, Tokyo Institute of Technology
前の記事
feedback
Top