Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
Braid monodromy of complex line arrangements
Nguyen Viet Dung
著者情報
ジャーナル フリー

1999 年 22 巻 1 号 p. 46-55

詳細
抄録
Let V be the complex vector space Cl, \mathscr{A} an arrangement in V, i.e. a finite family of hyperplanes in V In [11], Moishezon associated to any algebraic plane curve \mathscr{C} of degree n a braid monodromy homomorphism θ FsB(n), where Fs is a free group, B(n) is the Artin braid group. In this paper, we will determine the braid monodromy for the case when \mathscr{C} is an arrangement \mathscr{A} of complex lines in C2, using the notion of labyrinth of an arrangement. As a corollary we get the braid monodromy presentation for the fundamental group of the complement to the arrangement.
著者関連情報

この記事は最新の被引用情報を取得できません。

© Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top