Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
Linearization problem on structurally finite entire functions
Yûsuke Okuyama
著者情報
ジャーナル フリー

2005 年 28 巻 2 号 p. 347-358

詳細
抄録
We show that if a 1-hyperbolic structurally finite entire function of type (p, q), p≥1, is linearizable at an irrationally indifferent fixed point, then its multiplier satisfies the Brjuno condition. We also prove the generalized Mañé theorem; if an entire function has only finitely many critical points and asymptotic values, then for every such a non-expanding forward invariant set that is either a Cremer cycle or the boundary of a cycle of Siegel disks, there exists an asymptotic value or a recurrent critical point such that the derived set of its forward orbit contains this invariant set. From it, the concept of n-subhyperbolicity naturally arises.
著者関連情報

この記事は最新の被引用情報を取得できません。

© Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top