群馬高専レビュー
Online ISSN : 2433-9776
Print ISSN : 0288-6936
ISSN-L : 0288-6936
素数集合上の絶対シンプレクティック構造と絶対ワイル代数
谷口 正
著者情報
研究報告書・技術報告書 オープンアクセス

2013 年 32 巻 p. 69-74

詳細
抄録
The purpose of this paper is to give the absolute mathematics for the prime set. Absolute mathematics was introduced by N.Kurokawa in order to solve the Riemann conjecture. One of the idea for absolute mathematics is the prime differential on the rational integer Z. We analyze all possible arithmetic generalizations of symplectic and contact structures on a prime set. There are two different types of structures according to the Lagrangian subspace and Legendrian subspace. Main result is that the prime set is characterized by the Lagrangian subspace of absolute symplectic space (T*P, ω). We also define a notion of the absolute Weyl algebra.
著者関連情報
© 2013 本論文著者
前の記事 次の記事
feedback
Top