Publications of the Research Institute for Mathematical Sciences
Online ISSN : 1663-4926
Print ISSN : 0034-5318
The Converse of Minlos' Theorem
Yoshiaki OkazakiYasuji Takahashi
著者情報
ジャーナル フリー

1994 年 30 巻 5 号 p. 851-863

詳細
抄録
Let \mathscr{M} be the class of barrelled locally convex Hausdorff space E such that Eb' satisfies the property B in the sense of Pietsch. It is shown that if E∈\mathscr{M} and if each continuous cylinder set measure on E' is σ(E', E) -Radon, then E is nuclear. There exists an example of non-nuclear Fréchet space E such that each continuous Gaussian cylinder set measure on is E' is σ(E', E)-Radon. Let q be 2≤ q<∞. Suppose that E∈\mathscr{M} and E is a projective limit of Banach space {Eα} such that the dual Eα' is of cotype q for every α. Suppose also that each continuous Gaussian cylinder set measure on E' is σ(E', E)-Radon. Then E is nuclear.
著者関連情報

この記事は最新の被引用情報を取得できません。

© Research Institute forMathematical Sciences
前の記事
feedback
Top