Kyushu Journal of Mathematics
Online ISSN : 1883-2032
Print ISSN : 1340-6116
ISSN-L : 1340-6116
EXOTIC COMPONENTS IN LINEAR SLICES OF QUASI-FUCHSIAN GROUPS
Yuichi KABAYA
著者情報
ジャーナル フリー

2022 年 76 巻 2 号 p. 477-496

詳細
抄録

The linear slice of quasi-Fuchsian once-punctured torus groups is defined by fixing the complex length of some simple closed curve to be a fixed positive real number. It is known that the linear slice is a union of disks, and it always has one standard component containing Fuchsian groups. Komori and Yamashita proved that there exist non-standard components if the length is sufficiently large. We give two other proofs of their theorem: one is based on some properties of length functions, and the other is based on the theory of complex projective structures and complex earthquakes. From the latter proof, we can characterize the existence of non-standard components in terms of exotic projective structures with quasi-Fuchsian holonomy.

著者関連情報
© 2022 Faculty of Mathematics, Kyushu University
前の記事 次の記事
feedback
Top