Abstract
Laminated nanostructures of nickel and copper were fabricated via electrodeposition and their microstructure, strength and fracture behavior were characterized using x-ray diffraction, tensile testing and electron microscopy techniques. The results of this study indicated that the formation of porous regions is responsible for the brittleness of electrodeposited Ni/Cu laminated structures. Microprobe analysis revealed that within these porous regions copper is deposited with a low efficiency. It is suggested that local depletion of copper ions and formation of hydrogen bubbles due to hydrodynamics effects are responsible for the low efficiency of copper deposition and formation of pores. The brittle fracture of nickel and copper layers is discussed in terms of cleavage and tearing mechanisms.