Abstract
The grain growth phenomenon in a polycrystalline metal was studied by the molecular dynamics method. The time evolutions of the grain boundary network in the nano-grained polycrystals composed of 64 grains were analyzed by incorporating the boundary curvature and the grain boundary energy composed by the interatomic potentials. The grain growth phenomenon accompanied by the T1 and T2 processes was successfully observed. The rate of the grain growth was fairly close to the parabolic law. The grain boundaries were dominantly composed by random boundaries, but a number of coincidence boundaries were also observed.