Abstract
The modified Monte Carlo simulation of grain growth has been performed in the model applying actual orientation data by SEM/EBSP analysis in a pure aluminum to an initial microstructure. Changes in microstructural features and textures have been compared between experimental and simulated results. The SEM/EBSP analysis reveals that the pure aluminum has a residual rolling texture after annealing. The texture becomes sharper as the annealing time increases. The simulations are carried out under various conditions of grain-boundary energy and mobility. Microstructural and textural developments in the simulation taking the dependence of grain-boundary energy on misorientation into consideration were in good agreement with those in the experiment. The present model is expected to make it possible to predict the microstructural evolutions precisely.