MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Synthesis and Related Kinetics of Nanocrystalline Ni by Hydrogen Reduction of NiO
Jai-Sung LeeBum-Sung Kim
Author information
JOURNAL FREE ACCESS

2001 Volume 42 Issue 8 Pages 1607-1612

Details
Abstract

The present study has attempted to elucidate the formation mechanism of nanocrystalline (nc) Ni by hydrogen reduction of fine NiO powder in terms of related kinetics aspects. So, the kinetics and related mechanism of hydrogen reduction of NiO were investigated on the basis of structure modification of the NiO powder during reaction. The ball-milled NiO agglomerate powder having 20 nm in grain size and a log-normal pore size distribution was used for study. The non-isothermal reduction study showed that the nano-agglomerate NiO underwent a two-step reduction process which is presumably due to a chemical reaction at lower temperatures and a diffusion controlled process at higher temperatures. The activation energy for the nano-agglomerate NiO was 85.4 kJ/mol for lower temperatures and 105.1 kJ/mol for higher temperatures. The value for lower temperatures is consistent with that of as-received NiO of 85.6 kJ/mol. Such higher activation energy for higher temperatures can be attributed to the retardation of the reduction process by the change in the reduction mechanism from the chemical reaction to the diffusion process. Conclusively, the structure change during the reduction is believed to be responsible for the change in the reduction mechanism.

Content from these authors
© 2001 The Japan Institute of Metals and Materials
Previous article Next article
feedback
Top