MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Heterogeneously Junctioned Nano-Particles of Hematite and Goethite Formed in a Wet Process
Kazuharu IwasakiTakuya ItohTsutomu Yamamura
Author information
JOURNAL FREE ACCESS

2001 Volume 42 Issue 8 Pages 1629-1637

Details
Abstract

Acicular α-FeOOH particles are formed through aging of ferric oxyhydroxide colloidal solution formed by the neutralization of FeCl3 aqueous solution by NaOH . The effect of foreign ion addition to the colloidal solution on the formation and morphology of α-FeOOH particles has been investigated. The magnetic properties of Fe3O4 particles made from the obtained particles have also been investigated. The rate constant of the formation of α-FeOOH remarkably decreased, but the crystallite size of α-FeOOH particles increased with increasing the quantity of phosphate ion added even with small amounts. These results have been explained as follows: the phosphate ions are selectively adsorbed on the (a) plane of α-FeOOH, cover the (a) plane, and block the crystal growth of the (a) plane of the α-FeOOH . The quantities of the phosphate ion adsorbed on the b and c planes are relatively small. The complex ion of Fe(OH)4 is preferentially deposited on both (b) and (c) planes, and the crystal growth of (b) and (c) planes is greatly accelerated. The relationship between the morphology of the formed α-FeOOH particles and the quantity of phosphate ion added has been investigated. The asterisk type particles: α-FeOOH particles heterogeneously junctioned to α-Fe2O3 particles, were formed when a small amount of phosphate was added to the mother liquid. The α-FeOOH crystal epitaxially grew on the junction interface with the α-Fe2O3 crystal. In the case of the aging at the temperature as high as 80°C, the cross type junctioned particles were stably formed at pH below 12.0. The Fe3O4 particles with screw-like unique three-dimensional morphology were produced from the heterogeneously junctioned particles.

Content from these authors
© 2001 The Japan Institute of Metals and Materials
Previous article Next article
feedback
Top