MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Deformation and Fracture Behaviors of Pd-Cu-Ni-P Glassy Alloys
Chaoli MaAkihisa Inoue
Author information
JOURNAL FREE ACCESS

2002 Volume 43 Issue 12 Pages 3266-3272

Details
Abstract
Thermal behavior and mechanical properties of Pd-based glassy alloys with compositions of Pd35+xCu30Ni15−xP20 (x=0, 5, 7.5 at%, group-I) and Pd40+xCu20Ni20−xP20 (x=0, 5, 10 at%, group-II) have been studied. Group-I alloys lie in an invariant eutectic reaction region of the quaternary system. The invariant eutectic reaction of L→Cu3Pd+Ni2Pd2P+Cu3Pd5P2+quaternary phosphide exists at a composition of approximately Pd42.5Cu30Ni7.5P20 and at a temperature of about 800 K . Both group glasses possess a large supercooled liquid region of over 80 K before crystallization. The compressive strength, Young’s modulus and Vickers hardness in each group increase with increasing Ni content. The compressive fracture strength and Young’s modulus are in the range of 1610 to 1740 MPa and 100 to 110 GPa, respectively. Under a uniaxial compression mode, these glassy alloys deformed inhomogeneously and fractured adiabatically. No distinct plastic deformation was observed for group-I alloys, while group-II alloys exhibited serrated flow with a maximum plastic strain of about 1.3%.
Content from these authors
© 2002 The Japan Institute of Metals and Materials
Previous article Next article
feedback
Top