Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Effect of Fiber Properties on Neutron Irradiated SiC/SiC Composites
Tatsuya HinokiYutai KatohAkira Kohyama
Author information

2002 Volume 43 Issue 4 Pages 617-621


The use of SiC/SiC composites for nuclear application has recently been considered because of intrinsic low activation and superior high temperature mechanical properties of SiC. The property of SiC fiber is a key issue in order to improve mechanical properties of SiC/SiC composites following irradiation. SiC/SiC composites with unidirectional fibers were fabricated by chemical vapor infiltration method. Low oxygen and highly crystalline fibers or just low oxygen fibers were used in the composites. The specimens were irradiated at Japan Material Testing Reactor and High Flux Isotope Reactor. The effects of neutron irradiation on mechanical properties were examined by three points flexural test. Microstructure and fracture behavior were observed by scanning electron microscopy before and after neutron irradiation. The SiC/SiC composites with a low oxygen content, near-stoichiometric atomic composition and highly crystalline SiC fibers showed the excellent stability to neutron irradiation. The mechanical property of this material did not degrade, even after neutron irradiation up to 10 dpa, while the other materials with non-highly crystalline SiC fibers degraded significantly.

Information related to the author
© 2002 The Japan Institute of Metals and Materials
Previous article Next article