Abstract
The effects of W alloying and NbC dispersion on high temperature strength at 1773 K and room temperature fracture toughness are investigated using Nbss/Nb5Si3 and Nbss/Nb5Si3/NbC in-situ composites with the hypoeutectic composition, where Nbss denotes Nb solid solution. With increasing W content, 0.2% offset yield stress for both composites increases at 1773 K. The increase in the yield strength is attributable to the solid solution strengthening in Nbss by adding W, low diffusivity of W in Nbss and microstructural change caused by W addition. With increasing W content, fracture toughness decreases in the Nbss/Nb5Si3, but no marked change is observed in the Nbss/Nb5Si3/NbC. A crack propagates straightly in Nb–16Si–5Mo–15W, while crack deflection and branching take place in the Nbss/Nb5Si3/NbC. Fractography reveals that Nbss/Nb5Si3 fractures completely in a transgranular mode, while Nbss/Nb5Si3/NbC fractured in a mixed mode of transgranular fracture and interface decohesion between NbC and Nbss or Nb5Si3 and Nbss. It is suggested that the presence of NbC dispersoids in Nbss/Nb5Si3 is effective to increase high temperature strength without a significant decrease of fracture toughness.