MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Development of 3Y-PSZ/AISI 316L Composites for Joint Prostheses
Kazuhiro YoshidaHiroshi MishinaShinya SasakiMasafumi MoritaKiyoshi Mabuchi
Author information
JOURNAL FREE ACCESS

2004 Volume 45 Issue 11 Pages 3209-3215

Details
Abstract

The authors developed 3Y-PSZ/AISI 316L composites for the bearings of joint prostheses, which were then evaluated in terms of their mechanical properties, such as density, hardness, bending strength, fracture toughness and wear resistance, as well as corrosion resistance. The composites (AISI 316L contents were 0, 10, 20 and 30 vol%) were fabricated by spark plasma sintering. The composites consist of tetragonal zirconia and austenite stainless steel. The Vickers hardness and bi-axial bending strength of the composite decrease from 14.3 GPa to 8.93 GPa and 1585 MPa to 617 MPa, respectively, when the AISI 316L content is increased from 0 vol% to 30 vol%. Fracture toughness of the composite increased from 4.99 MPa·m1/2 to 6.03 MPa·m1/2. The composites showed improved wear resistance (3Y-PSZ; 3.08 × 10−10 mm2/N, 10 vol% composite; 2.11 × 10−10 mm2/N, 20 vol% composite; 0.28 × 10−10 mm2/N, 30 vol% composite; 0.00 × 10−10 mm2/N). The wear resistance of the 30 vol% composite was higher than conventional biometal and bioceramic (AISI 316L; 35.4 × 10−10 mm2/N, Co-28Cr-6Mo; 11.0 × 10−10 mm2/N, Al2O3; 0.30 × 10−10 mm2/N). The composites showed more than 3 times greater corrosion resistance than the monolithic AISI 316L in PBS(−) at 37°C. In particular, nickel ion release was lower than for AISI 316L. The corrosion resistance of 30 vol% composite during the wear test was more than 37 times higher than for AISI 316L. The 30 vol% composite was successfully toughened and showed higher resistance to wear and corrosion when used as bearing material for joint prostheses.

Content from these authors
© 2004 The Japan Institute of Metals and Materials
Previous article Next article
feedback
Top