Abstract
Low-Frequency Electromagnetic Vibrating Casting (LFEVC) was developed to cast large-scale highly alloyed Al-Zn-Mg-Cu-Zr ingots for super-high strength and toughness. Compared with conventional Direct Chilling Casting (DC), LFEVC can significantly improve surface quality, decrease hot-tearing tendency, generate finer, more uniform and equiaxed microstructures, and greatly suppress macro segregation and grain boundary segregation with increasing alternate and direct current ampere turns. In the range of alternate and direct current ampere turns employed in the experiments, the optimum condition is that the alternate current ampere turns is 9,000 At and the direct current ampere turns is 14,300 At.