Abstract
The Avrami exponent n of Ti50Ni25Cu25 amorphous ribbons during isothermal annealing derived from the Johnson-Mehl-Avrami equation is about 3.0 and shows good agreement with that obtained by Schloßmacher et al. This indicates that the main crystallization mechanism of Ti50Ni25Cu25 ribbons is interface-controlled three-dimensional isotropic growth with early nucleation-site saturation. According to the Arrhenius relation, the activation energy for crystallization is 314 kJ/mol. This value is similar to that obtained using the Kissinger method, which implies that the crystallization during continuous heating or isothermal annealing follows a similar crystallization mechanism.