MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Isothermal Aging Behavior of Beta Titanium–Manganese Alloys
Masahiko IkedaMasato UedaRyoichi MatsunagaMichiharu OgawaMitsuo Niinomi
Author information
JOURNAL FREE ACCESS

2009 Volume 50 Issue 12 Pages 2737-2743

Details
Abstract

Although titanium is considered to be a ubiquitous element as it has the 10th-highest Clarke number of all the elements, it is actually classified as a rare metal because the current refinement process for the metal is more environmentally damaging than the processes used to refine iron and aluminum. Furthermore, the principal alloying elements of titanium alloys are very expensive, owing to their low crustal abundances; this is especially true of the beta-stabilizing elements. Manganese is also considered to be a ubiquitous element as it has the 12th-highest Clarke number of all the elements. Therefore, manganese is promising as an alloying element for titanium, especially as a beta-stabilizing element. In order to develop beta titanium alloys as ubiquitous metallic materials, it is very important to investigate the properties of Ti-Mn alloys. In this study, the phase constitutions and isothermal aging behaviors of Ti-6.0 to 14.8 mass%Mn alloys were investigated by electrical resistivity and Vickers hardness measurements, X-ray diffraction (XRD), and optical microscopy. In 6.0 mass%Mn alloys quenched from 1173 K, both hexagonal close-packed martensite and the beta phase were identified by XRD, whereas only the beta phase was detected in 8.7 and 14.8 mass%Mn alloys. The resistivity at liquid nitrogen temperature was greater than that at room temperature between 6.0 and 14.8 mass%Mn. The Vickers hardness decreased with an increase in the Mn content up to 11.3 mass%Mn and then increased slightly. On aging at 673 K, the isothermal omega phase was precipitated in 6.0 to 11.3 mass%Mn alloys, while it was precipitated by aging at 773 K in 6.0 and 8.7 mass%Mn alloys. The Vickers hardness increased drastically on isothermal omega precipitation, whereas it increased slightly in the case of direct alpha precipitation with no isothermal omega precipitation.

Content from these authors
© 2009 The Japan Institute of Metals and Materials
Previous article Next article
feedback
Top