MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
Effect of O2-Plasma Treatment on Surface Characteristics and Osteoblast-Like MG-63 Cells Response of Ti-30Nb-1Fe-1Hf Alloy
En-Yu WuKeng-Liang OuShih-Fu OuKlaus D. JandtYung-Ning Pan
Author information
JOURNALS FREE ACCESS

2009 Volume 50 Issue 4 Pages 891-898

Details
Abstract

In this study, the effect of O2-plasma treatment with various powers on the surface characteristics and also the cell response of the Ti-30Nb-1Fe-1Hf alloy were investigated. Surface characteristics of Ti-30Nb-1Fe-1Hf alloy were evaluated by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray powder diffractometer (XRPD) and wettability test. The results show that the surface roughness of the alloy decreases after O2-plasma treatment, and also with increased plasma power. By XPS analyses, both Ti valence states of Ti2+, Ti3+ and Ti4+ as well as Nb valence states of Nb2+, Nb4+ and Nb5+ can be detected in the oxide films. Also, the concentrations of TiO2 and Nb2O5 increase with increasing O2-plasma power. The results also show that the contact angle decreases as the alloy is modified by O2-plasma treatment, and therefore, the treated alloys can be expected to be more hydrophilic. On the other hand, for the evaluation of cell response, cell (MG-63) culture was performed. The results show that the oxidation effect on the alloy surface brought about by O2-plasma treatment enhances the spreading of cells. In addition, in vitro tests suggest that cell spreading on Ti-30Nb-1Fe-1Hf alloy is similar to that on Ti-6Al-4V alloy, whereas, cell adhesion on Ti-30Nb-1Fe-1Hf alloy is better than that on Ti-6Al-4V alloy.

Information related to the author
© 2009 The Japan Institute of Metals and Materials
Previous article Next article
feedback
Top