2017 Volume 58 Issue 12 Pages 1656-1663
Tensile tests of single crystalline and polycrystalline Mg-Y alloys were carried out at room temperature to investigate the influence of yttrium on activation of <c+a> slip systems and to clarify the relationship between ductility of magnesium and the activation of <c+a> slip systems. Tensile directions of single crystals and polycrystals were parallel to (0001) and their rolling direction, respectively. Mg-(0.6–1.1)at%Y alloy single crystals yielded due to the first order pyramidal <c+a> slip (FPCS). Yield stress and ductility of Mg-(0.6–1.1)at%Y alloy single crystals were higher than those of pure magnesium. Mg-0.9at%Y alloy polycrystals showed higher ductility than pure magnesium. The number of grains where second order pyramidal slips were activated was the largest in those where non-basal slips were activated in pure magnesium, while those where FPCS were activated increased with increasing strain in Mg-0.9at%Y alloy. High ductility of Mg-0.9at%Y alloy would be caused by activation of FPCS due to yttrium addition.
This Paper was Originally Published in Japanese in J. Japan Inst. Met. Mater. 81 (2017) 458–466.