MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Microstructure and Mechanical Properties of Friction-Welded A6063 and A2017 Alloys
Eun Hye KimKazuhiro NakataKuk Hyun Song
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2017 Volume 58 Issue 5 Pages 711-715

Details
Abstract

The microstructures and mechanical properties of lightweight friction-welded dissimilar materials such as A6063 and A2017 alloy rods were investigated in this study. Friction welding was performed at a rotation speed of 2,000 RPM, friction load of 12 kgf/cm2, and upset force of 25 kgf/cm2. After welding, grain boundary characteristic distributions and the formation of intermetallic compounds were analyzed by electron backscattering diffraction and transmission electron microscopy, respectively, while the mechanical properties of the welded materials were studied by Vickers microhardness and tensile testing. The obtained results revealed that the friction welding of the two alloys led to significant grain refinement from around 50 μm for the base materials to 2 μm for the welded zone, while the Vickers microhardness and tensile strength of the welded area were equal to 81% and 96% of the corresponding values for the base materials, respectively, owing to the formation and growth of intermetallic compounds. However, the fracture initiated in the A6063 base material during tensile testing indicated superior quality of the welded joint. Therefore, friction welding of dissimilar materials can be effectively used to produce joints with high durability.

Content from these authors
© 2017 The Japan Institute of Metals and Materials
Previous article Next article
feedback
Top