MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Martensitic Transformation of Retained Austenite in Ferrite Matrix for Low Alloy Steel
Takayuki YamashitaNorimitsu KogaOsamu Umezawa
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2018 Volume 59 Issue 5 Pages 712-716

Details
Abstract

Martensitic transformation behavior in low-alloy transformation-induced plasticity steels has been studied at 293 K and 193 K. The as-received austenite precipitated in the ferrite matrix satisfied the Kurdjumov–Sachs orientation relationship with the ferrite matrix. The transformed martensite in the ferrite matrix was detected and it commonly exhibited the same orientation as the ferrite matrix. The martensitic transformation was independent of the selection of variant by stress accommodation. Thus, the transformed martensite variant was chosen predominantly to reduce interfacial energy. The transformed martensite may contribute to work-hardening in the ferrite matrix as a harder phase. Further, the transformed martensite at ferrite grain boundaries was due to stress accommodation. The variant achieving the highest Schmid factor in individual austenite was predominantly chosen to introduce slip deformation.

Content from these authors
© 2018 The Japan Institute of Metals and Materials
Previous article Next article
feedback
Top