MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Applicability of As-Cast on β Type Titanium Alloys Proposed in the Compositional Region with Different Tensile Deformation Types
Xi-Long MaKazuhiro MatsugiZhe-Feng XuYong-Bum ChoiRyohei MatsuzakiJie HuXin-Gang LiuHao Huang
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2019 Volume 60 Issue 11 Pages 2426-2434

Details
Abstract

Three β type titanium alloys were proposed for as-cast applications in practical fields on the basis of the d-electrons parameters with both bond order (Bot) and d-orbital energy level (Mdt). Ti–5.5Cr–5.4Mn–5.1Zr–2.8Fe with the lowest Mdt, Ti–4.5Cr–2.5Mn–1.1Al with the lowest Bot and Ti–10.8Mo–2.3Sn–1.0Al with the highest Mdt were designed by using ubiquitous elements in the predicted regions showing the slip, twin and martensite dominant deformation behaviors in the Bot-Mdt diagram, respectively. Their ingots were produced by the cold crucible levitation melting technique. Ti–5.5Cr–5.4Mn–5.1Zr–2.8Fe showed mono β phase and similar stress-strain curves with highest tensile strength more than 1000 MPa at both as-cast and solution treated conditions, which corresponded to the slip dominant deformation. Ti–4.5Cr–2.5Mn–1.1Al showed β and a small amount of α′′ phases, and the stress-strain curves with stress-induced α′′ martensite at both conditions, which corresponded to the twin dominant deformation. Ti–10.8Mo–2.3Sn–1.0Al consisted of β and large amounts of α′′ martensite phases and showed the fracture strain more than 35% at both conditions, which corresponded to the martensite dominant deformation. Segregation degree in solidification process showed 4.8 times larger in the Ti–5.5Cr–5.4Mn–5.1Zr–2.8Fe position far from pure Ti position in the Bot-Mdt diagram, compared with that of Ti–10.8Mo–2.3Sn–1.0Al close to the pure Ti position. It was found that as-cast application possibility of both alloys of Ti–5.5Cr–5.4Mn–5.1Zr–2.8Fe and Ti–10.8Mo–2.3Sn–1.0Al could be promising in the view of tension behaviors.

Content from these authors
© 2019 Japan Foundry Engineering Society
Previous article Next article
feedback
Top