2019 Volume 60 Issue 8 Pages 1598-1600
Cerium, a rare earth element, was alloyed at various ratios with magnesium to create Mg–Ce single crystals which were then subjected to [1100] and [1120] tensile tests to clarify effects of cerium on activation of non-basal slips at room temperature. Mg–0.016 mol%Ce alloys yielded due to {1011} twins in [1100] tension tests. Mg–0.052 mol%Ce single crystals yielded due to {1122}⟨1123⟩ second order pyramidal ⟨c+a⟩ slip (SPCS), similar to pure magnesium single crystals, in [1120] tensile tests. Cerium addition decreased critical resolved shear stresses (CRSS) for {1011} twinning and SPCS. The decrease in CRSS for SPCS likely results from the frequency of sessile (c+a) dislocations decreasing with decreasing stacking fault energy of second order pyramidal planes.
This Paper was Originally Published in J. Japan Inst. Light Metals 69 (2019) 125–127.