MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Materials Processing
Structures and Hardness of Materials Formed by Melting and Liquid Diffusion of Mg Alloy Substrate with Pure Al Surface
Fumitaka Otsubo
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2020 Volume 61 Issue 8 Pages 1657-1662

Details
Abstract

In this study, pure Al powder was compression molded on the surface of flame-retardant Mg alloy plate, and integration of pure Al and Mg alloy was attempted by melting and solidification in air. In order to integrate different materials by liquid diffusion of metal elements, the structure, composition phase and hardness of the formed integrated materials were investigated.

It was found that heating the specimens for 180 s results in melting and liquid diffusion between Al and Mg. When heated and melted with pure Al down and Mg alloy up (Type B), shrinkage cavity was formed on the former Mg alloy side of the former Al/former Mg alloy interface. When heated at 450 s, the specimen was composed of Al–Mg system stable phases of Al3Mg2 and Al12Mg17, and Al–Mg system metastable phases of Al0.37Mg0.63 and Al0.1Mg0.9. In Type A with pure Al up and Mg alloy down and Type B, stable phases of Al3Mg2 and Al12Mg17 were formed on the former Al side. The constituent phase of the former Mg alloy side was composed of metastable phases of Al0.37Mg0.63 and Al0.1Mg0.9, but the structure morphologies of Type A and B differed near the surface of the former Mg alloy side, and the primary phase was Al0.37Mg0.63 and Al0.1Mg0.9 respectively. The final solidification phase consisted of eutectic phases of Al0.37Mg0.63 and Al0.1Mg0.9. The hardness on the former Al side was about 250 HV, and the hardness on the former Mg alloy side had decreased. Type B was evaluated to be lower than Type A.

 

This Paper was Originally Published in Japanese in J. JFS 92 (2020) 69–74.

Content from these authors
© 2020 Japan Foundry Engineering Society
Previous article Next article
feedback
Top