MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Engineering Materials and Their Applications
Reduction of Spatter Generation Using Atmospheric Gas in Laser Powder Bed Fusion of Ti–6Al–4V
Hiroki AmanoYusuke YamaguchiTakuya IshimotoTakayoshi Nakano
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2021 Volume 62 Issue 8 Pages 1225-1230

Details
Abstract

Laser powder bed fusion (LPBF), a typical additive manufacturing (AM) process, is a promising approach that enables high-accuracy manufacturing of arbitrary structures; therefore, it has been utilized in the aerospace and medical fields. However, several unexplained phenomena significantly affect the quality of fabricated components. In particular, it has been reported that the generation of spatters adversely affects the stability of fabrication process and degrades the performance of the fabricated components. To realize high-quality components, it is essential to suppress the generation of spatters. Thus far, the suppression of spatter generation has been attempted based on the process parameters; however, this has not been adequately discussed in terms of the fabrication atmosphere. Therefore, in this study, we focused on the fabrication atmosphere and investigated spatter generation using gas with different physical properties rather than conventionally used argon. It was observed that the spatter generation during the fabrication of the Ti–6Al–4V alloy could be significantly suppressed by changing the atmospheric gas, even under constant LPBF process parameters. We proved that the fabrication atmosphere is an important factor to be considered, apart from the process parameters, in AM technology.

Fullsize Image
Content from these authors
© 2021 The Japan Institute of Metals and Materials
Previous article Next article
feedback
Top