MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Special Issue on Structural Analysis and Measurement of Physical Properties on Advanced and Fundamental Materials
Behaviour of Nickel-Rich Non-Equimolar High Entropy Alloys in High-Temperature Oxidizing Conditions
Richard GawelŁukasz RogalJarosław Dąbek
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2022 Volume 63 Issue 4 Pages 442-449

Details
Abstract

This study aims to compare the behaviour of two Ni-rich non-equimolar AlCoCrFeNi high entropy alloys, i.e. Al20Co5Cr20Fe20Ni35 and Al10Co15Cr20Fe20Ni35 (at%) in isothermal high-temperature oxidizing conditions. In both cases, mass gain after 100-hr oxidation at 1173 K in synthetic air atmosphere does not exceed 1 mg/cm2, indicating good resistance against the corrosive environment. Investigations on the morphology, chemical and phase composition of the alloys after the oxidation process indicate that a mixture of Al2O3 and Cr2O3 is responsible for the protective properties of the scale formed on Al20Co5Cr20Fe20Ni35, whereas an additional chromium–iron–nickel–cobalt spinel structure was determined on the Al10Co15Cr20Fe20Ni35 sample after prolonged exposure to the above-mentioned conditions. The oxidation kinetics are slightly better in the case of Al20Co5Cr20Fe20Ni35 and lower amounts of the remaining constituent elements were detected in the protective scale compared to Al10Co15Cr20Fe20Ni35. Furthermore, the Al20Co5Cr20Fe20Ni35 substrate was able to maintain its initial morphology throughout the entire alloy after the corrosion process. From all of the above, it can be concluded that Al20Co5Cr20Fe20Ni35 seems to demonstrate better oxidation properties at a high temperature than Al10Co15Cr20Fe20Ni35.

Fig. 9 XRD patterns obtained from (a) Al20Co5Cr20Fe20Ni35 and (b) Al10Co15Cr20Fe20Ni35 after oxidation at 1173 K in synthetic air for 100 h. Fullsize Image
Content from these authors
© 2022 The Japan Institute of Metals and Materials
Previous article Next article
feedback
Top