MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Special Issue on Structural Analysis and Measurement of Physical Properties on Advanced and Fundamental Materials
Investigation of Microstructures Changing in High Manganese Steel Mn15Cr2V after Heat Treatment and Impacted Load
Nguyen Duong NamLe Thi NhungVu Anh TuanNguyen Hong HaiPham Mai Khanh
著者情報
ジャーナル フリー HTML

2022 年 63 巻 4 号 p. 450-457

詳細
抄録

In this paper, the changing of microstructures on the surface layer of high manganese steel (HMnS) Mn15Cr2V under the impacted load was investigated. By theoretical calculations based on stacking fault energy (SFE), it was found that at 300 K, the SFE value of this steel was 34.7247 mJ/m2 and at 220 K, the SFE value was 34.72173 mJ/m2. Thus, with this result, the SFE’s value is much larger than the value of the martensitic transformation, which was about 18 mJ/m2. It can be shown that there will be no martensite changes even if the sample is heat-treated with the sub-zero process. The results of the microstructure analysis show that the microstructures were austenite with carbide particles (VC and Cr7C3) that had a small grain size (about 40 nm) and were dispersed in the microstructures. The study’s findings revealed that when the number of impact loads is 3,000 times, the surface layer exhibited twinning, slip, and austenite nanoparticles. When the number of impact loads increases by 10,000 times, the microstructure of the surface steel appears in the amorphous phase. The results of theoretical calculations based on the changing of stacking fault energy (SFE) and experimental results show that there is no appearance of martensite form on the surface layer in research conditions.

Fullsize Image
著者関連情報
© 2022 The Japan Institute of Metals and Materials
前の記事 次の記事
feedback
Top