MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Special Issue on Kink-Strengthening of Mille-Feuille Structured Materials
Effect of Extrusion Ratio in Hot-Extrusion on Kink Deformation during Compressive Deformation in an αMg/LPSO Dual-Phase Magnesium Alloy Monitored by In Situ Neutron Diffraction
Stefanus HarjoWu GongKazuya AizawaTakuro KawasakiMichiaki YamasakiTsuyoshi MayamaYoshihito Kawamura
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2023 Volume 64 Issue 4 Pages 766-773

Details
Abstract

To elucidate the effect of extrusion ratio in hot-extrusion on the deformation behavior during compression of Mg97Zn1Y2 alloy containing about 25-vol% long-period stacking ordered phase (LPSO) in the HCP structured α matrix (αMg), in situ neutron diffraction measurements were performed under compressive loading using four types of samples: as-cast and after hot extrusion at 623 K with extrusion ratios of 5.0, 7.5 and 12.5. The macroscopic yielding was observed to appear by the occurrence of basal slip of αMg in the as-cast sample and at the onset of twinning in the hot extruded samples. The applied stress to initiate slip, twinning, and kinking increased by hot extrusion and then decreased with increasing extrusion ratio. LPSO shared higher stress than αMg and the ratio to the strength increased as the extrusion ratio increased. In the extruded samples, the phase stress levels in LPSO when kinking initiated were almost the same for the hot-extruded samples, around 580 MPa, regardless of the extrusion ratio.

Fullsize Image
Content from these authors
© 2023 The Japan Institute of Metals and Materials
Previous article Next article
feedback
Top