2024 Volume 65 Issue 6 Pages 637-643
Mean torsional stress is considered to have less effect on the torsional fatigue strength of steels, but several experimental results have been recently reported that mean torsional stress caused significant reduction in torsional fatigue strength in the very high cycle region for shot-peened spring steel. To investigate the effect of mean torsional stress on high strength steel, ultrasonic torsional fatigue tests with mean torsional stress were conducted for spring steel and bearing steel, which are used for mechanical components subjected to cyclic shear stress. Torsional fatigue strengths up to 109 cycles were obtained for fully-reversed torsional loading (R = −1) to pulsating torsional loading (R = 0). The results revealed that mean torsional stress caused a reduction in fatigue strength in the very high cycle region for both spring steel and bearing steel, and applying higher mean shear stress would result in transition of the fracture origin from a surface to an internal inclusion. The reduction in torsional fatigue strength was discussed from the viewpoint of the transition of the fatigue origin, and applicability of a √area parameter model was discussed for predicting the reduction in torsional fatigue strength.
This Paper was Originally Published in Japanese in J. Soc. Mater. Sci., Japan 71 (2022) 976–982. Abstract, Sec. 2.2, Sec. 4.1, and Ref. 5 are slightly modified.