Abstract
The ten best papers for young scientists were awarded by The Japan Institute of Light Metals (JILM) and The Japan Institute of Metals and Materials (JIMM) in Materials Transactions. Here, the awarded papers are briefly summarized as current trends in research of Materials Transactions. Among the ten best papers, six were from JILM for young scientists whose ages are 30 or below and four from JIMM for those with ages of 35 or below. A total of six best papers were originally published in Japanese in Journal of the Japan Institute of Light Metals and Journal of The Japan Institute of Metals and Materials as cutting-edge research in JILM and JIMM. In association with all the awarded papers, special issues edited in Materials Transactions are also briefly introduced to show the recent activities of Materials Transactions.
1. Introduction
As current trends in research of Materials Transactions, it is our great pleasure to introduce the young scientists best papers [1–10] which were awarded in 2023 and 2024 by The Japan Institute of Light Metals (JILM) and The Japan Institute of Metals and Materials (JIMM). The best papers include a total of ten where six papers are from JILM [1–6] and four papers from JIMM [7–10]. The JILM and JIMM are two companion institutes among 14 institutes and societies sharing publication from Materials Transactions [https://jimm.jp/en/publications/journal.html]. Authors may chose either one of the 14 institutes and societies depending on the specialties in terms of materials, analytical procedures and processing technologies, although some institutes and societies accept the submission only from members including expected members. Since 2020, Materials Transactions has made a series of announcements for the best paper awards [11–15].
The selection of the best papers in JILM [1–6] was made in two-step processes: first through a recommendation committee and second through an evaluation committee. The members in the recommendation committee nominates around ten papers out of all the papers published through JILM in the past one year. Members of the evaluation committee then score the whole nominated papers, and the three papers which earned the highest scores are awarded as Light Metal Paper Prize. If the first author is at the age of 30 or less, the corresponding paper wins the award as Light Metal Paper-by-Newcomer Prize (Young Scientists Best Paper). Scoring for the best papers in JILM is made based on the following criterions: (a) sufficient originality, (b) high potential for significant research advancement, (c) solving long-term problem, (d) being far ahead of others and (e) enormous contribution to application development.
For the young scientists best papers in JIMM, the selection committees carefully evaluated the papers of which authors are at the age of 35 or less. Recommendation of the papers is made by referees of reviewing processes, editorial members of Materials Transactions and board members of the Japan Institute of Metals and Materials including authors’ self-recommendation. Each paper was rigorously scored by about 10 members of the award selection committee representing either of the following six research areas: (1) materials physics, (2) microstructures of materials, (3) mechanics of materials, (4) materials chemistry, (5) materials processing, and (6) engineering materials and their applications. The evaluation criteria in JIMM are based on (a) sufficient originality and novelty and (b) good potential for significant research advancement.
It is noted that five of the young scientist best papers in JILM [2–6] and one of the young scientist best papers in JIMM [10] were originally published in Japanese in Journal of The Japan Institute of Light Metals [16–20] and in Journal of The Japan Institute of Metals and Materials [21], respectively. They were translated to English following the rule of Materials Transactions. Here, the ten best papers for young scientists are introduced below [1–10, 16–21] with brief summaries provided by the corresponding authors.
2. (JILM Young Scientist Best Paper Award) “Influence of Initial Extruded Microstructures of Al-4.4Zn-1.4Mg Alloy Flat Bar on VDA Bendability” by Amalina Aina Kaharudin, Ran Saeki, Mai Takaya, Tadashi Minoda, Tomoyuki Homma (Vol. 64, No. 2 (2023) pp. 421–428) [1]
The bendability of extruded Al-4.4Zn-1.4Mg (mass%) alloy flat bars with a cross section of 70 mm width and 1.4 mm thickness, having two types of microstructures, which are fibrous and recrystallized, is evaluated by a Verband der Automobilindustrie (VDA) bending test without pre-strain [22]. The recrystallized specimen has a larger bending angle until a 30 N load drop (α–30N) from the maximum load during the VDA bending deformation [23]. The recrystallized microstructure shows a strong Cube texture in the inner microstructure, while the crystal orientation distributions of the fibrous microstructure {322}⟨230⟩ to {212}⟨021⟩ and {211}⟨131⟩ to Goss are predominant in the initial state. A finite element analysis confirms that the tensile side of both specimens experiences a high maximum shear stress at a depth of approximately 300–500 µm from the outermost surface. At a maximum load bending angle (αFmax), the pole figure of the fibrous microstructure shows the assemblage of crystal orientations towards Brass {110}⟨112⟩, as shown in Fig. 1 [24]. This could be the cause of a faster 30 N load drop, as the Brass orientation contributes to a faster shear bands formation [25]. In addition, the fibrous microstructure has a higher volume fraction of second phase particles than the recrystallized microstructure, leading to a larger area fraction of microvoids at αFmax. During bending deformation, the shear bands tend to accumulate at localized shear strain areas, resulting in a crack approximately 300 µm long at the tensile side of the fibrous microstructure at α–30N. Despite having a larger α–30N, the recrystallized microstructure only shows a small crack in the coarse grains because the shear bands are evenly distributed within a 300 µm depth range from the outermost surface (Fig. 1). The accumulation of shear bands in both microstructures up to 300 µm from the outermost surface of the tensile side indicates that texture control and microvoid suppression are crucial in this region to enhance VDA bendability.

3. (JILM Young Scientist Best Paper Award) “Effects of Local Bonding between Solute Atoms and Vacancy on Formation of Nanoclusters in Al–Mg–Si Alloys” by Kensuke Kurihara, Ivan Lobzenko, Tomohito Tsuru, Ai Serizawa (Vol. 64, No. 8, (2023), pp. 1930–1936) [2]
In Al-Mg-Si alloys, two types of solute-atom clusters (nanoclusters), Cluster (1) and Cluster (2), are formed depending on the formation temperature. It is thought that Cluster (1) formed at near room temperature is less likely to transition to the strengthening phase, in contrast, Cluster (2) formed at near 100°C is more likely to transition to the strengthening phase [26]. To clarify such complicated behavior of nanocluster formation, various research has been conducted including TEM observations [27] soft X-ray XAFS analysis [28, 29], positron annihilation spectroscopy [30] and computer simulations [31, 32]. The thermal stability of nanoclusters is presumed to be significantly affected by the local structure because nanoclusters do not have a specific long-range structure, unlike metastable phases. Thus, it is essential to clarify the effect of local bonding to discuss the thermal stability of nanoclusters, which are mainly composed of solute atoms. In the present study, first-principles calculations were carried out to evaluate the two- and three-body interactions between Mg, Si atoms and vacancies in the Al matrix and estimate the effect of local bonding on the formation of nanoclusters. Monte Carlo simulations were subsequently performed to investigate the stable structure of the nanocluster formed in Al-Mg-Si alloys. The main findings are that the Mg–Si and Si–Vac pairs are stable in the Al matrix. The result shows that the solute atoms easily aggregate with different types of solute atoms and that the Si atom has a strong attractive interaction with a vacancy. Furthermore, Mg–Si–vacancy triplets are more stable than Mg–Si and Si–vacancy pairs in the Al matrix (Fig. 2). In addition, the nanoclusters in the Al matrix were thermally stabilized by the stable configurations between solute atoms and vacancy. Finally, the first-principles calculations suggested that the local bondings within a nanocluster play a significant role in not only the thermal stability but also the formation and growth behavior of nanoclusters during aging at low temperatures.

4. (JILM Young Scientist Best Paper Award) “Effect of Precipitation Size on Dislocation Density Change during Tensile Deformation in Al-Zn-Mg Alloy” by Masahiro Hirata, Koichi Iwata, Daisuke Okai and Hiroki Adachi (Vol. 64, No. 11 (2023), pp. 2584–2590) [3]
The effect of changing the precipitate radius from 0 to 6 nm on the flow stress and dislocation density during tensile deformation in the Al–Zn–Mg precipitation-hardening alloy was investigated. The dislocation densities during tensile deformation were measured using in-situ X-ray diffraction with a time resolution of about 2 s at the SPring-8 synchrotron radiation facility [33, 34], and the precipitate sizes were measured using small-angle X-ray scattering measurements [35]. In region III, which is the plastic deformation region, the increase in dislocation density with deformation was largest under the peak aging condition. However, as shown in Fig. 3, the amount of work hardening was small, and the contribution of work hardening was minimal. On the other hand, under under-aging and over-aging conditions, the increase in dislocation density in region III was smaller than in the peak aging condition, but the amount of work hardening was larger than in the peak aging condition. This revealed that the amount of work hardening is not determined solely by the amount of dislocation multiplication, but varies depending on the amount and strength of obstacles that provide stronger resistance to the movement of mobile dislocations than forest dislocations. This result shows that the flow stress in precipitation hardening alloys cannot be expressed as a simple sum of the amounts of precipitation hardening and dislocation hardening.

5. (JILM Young Scientist Best Paper Award) “Growth Behavior of Pores and Hydrogen Desorption Behavior in Pure Aluminum and A6061 Aluminum Alloys” by Shono Yaegashi, Kazuyuki Shimizu, Yasuhiro Kamada, Hiroyuki Toda, Hiro Fujihara, Masayuki Uesugi, Akihisa Takeuchi (Vol. 65, No. 1 (2024) pp. 85–92) [4]
An increase in the volume fraction of pores in aluminum alloys causes a decrease in the elongation and the strength of alloys [36–38]. To improve the mechanical properties of aluminum alloys, it is important to understand the growth and shrinkage behavior of pores [39, 40]. In this study, we analyzed the relationship between hydrogen desorption behavior and the growth/shrinking behavior of pores in A6061 alloys and pure aluminum using thermal desorption analysis and synchrotron radiation X-ray tomography [41]. In pure aluminum, the fine pores began to annihilate at temperatures above 500°C and the relatively large pores coarsened. In contrast, the pores shrank with increasing temperature in A6061 alloy.
The influence of second-phase particles has been discussed as a possible explanation for the difference in the nature of pores at elevated temperatures in pure aluminum and A6061 alloys. Figure 4 shows a schematic illustration of the differences in hydrogen desorption and the related growth behavior of pores in pure aluminum and A6061 alloys. In pure aluminum without second-phase particles, most of the hydrogen desorbed from the pores is hindered by the passive film and cannot be released. As a result, the hydrogen concentration in the matrix becomes relatively high, making it difficult for hydrogen within the pores to desorb. This leads to an increase in the internal pressure of the pores, causing them to grow. As in the A6061 alloy, much of the hydrogen desorbed from the pores due to heating is released externally from the second-phase particles on the aluminum surface, resulting in pore shrinkage due to the internal pressure drop of pores.
6. (JILM Young Scientist Best Paper Award) “Multi-Modal 3D Image-Based Simulation of Hydrogen Embrittlement Crack Initiation in Al-Zn-Mg Alloy” by Ryota Higa, Hiro Fujihara, Hiroyuki Toda, Masakazu Kobayashi, Kenichi Ebihara, Akihisa Takeuchi (Vol. 65, No. 8 (2024) pp. 899–906) [5]
In Al-Zn-Mg alloy, it is indispensable to suppress hydrogen embrittlement (HE) for developing a high-strength alloy. In particular, we need to understand the initiation of intergranular fracture (IGF) because it is the main mode of HE fracture. In a previous study, it was reported that spontaneous debonding of GB occurs due to hydrogen accumulation [42]. Moreover, hydrogen accumulation is caused by stress localization in deformed polycrystalline metals [43]. It is necessary to evaluate hydrogen accumulation behavior at GBs to understand the initiation behavior of IGF.
In the present study, we investigated the distribution of stress and hydrogen concentration in actual fractured regions by simulation employing a crystal plasticity finite element method and hydrogen diffusion analysis in a 3D image-based model, which was created based on 3D polycrystalline microstructure data obtained from X-ray imaging technique. Combining the simulation and in-situ observation of fracture behavior using X-ray CT (Fig. 5), the conditions for intergranular crack initiation were discussed. As a result, no clear relationship was found between the hydrogen concentration and crack initiation behavior. It is considered that this is because the influence of hydrogen trapping in precipitates [44] at GBs and penetration of external hydrogen [45] on crack initiation were not considered. In addition, it was found that GBs with higher stress normal to GB tended to be more prone to crack initiation. The stress normal to GB, which is increased by crystal plasticity, is considered to be the dominant mechanical factor in crack initiation. From these considerations, we infer that the strength of the GB-precipitate interface is reduced by hydrogen enrichment due to diffusion of internal hydrogen and penetration of external hydrogen, and that the initiation of intergranular cracks is caused by the high stress normal to GB because of crystal plasticity.

7. (JILM Young Scientist Best Paper Award) “Mg-1.88Zn-0.75Y Cast Alloys with High Thermal Conductivity of 141 Wm−1K−1” by Yunsheng Wang, Shin-ichi Inoue and Yoshihito Kawamura (Vol. 65, No. 10 (2024) pp. 1358–1366) [6]
The present study focuses on the Mg-Zn-Y alloys, in which the mixing enthalpy of the added element pair is negatively large (ΔHmix = −31 kJ/mol) and can exhibit great mechanical strength due to the LPSO phase (Mg12ZnY) [46–50], W phase (Mg3Zn3Y2) [51, 52], or I phase (Mg3Zn6Y) [53, 54]. By optimizing the alloy composition and heat-treatment conditions, a Mg-Zn-Y alloy with high thermal conductivity of 141 Wm−1K−1 that is equivalent to approximately 90% of the thermal conductivity of pure Mg was developed.
The optimal alloy composition was Mg-1.88Zn-0.75Y (at%), in which the ratio of Zn content to Y content was 2.5 and the Y content was 0.75 at%. The alloy was composed of α-Mg + W phase + I phase. Heat treatment under the optimal heat treatment conditions, where temperature, time and cooling rate were 633 K, 15 h and air cooling, respectively, improved the thermal conductivity by 27 Wm−1K−1 from 114 to 141 Wm−1K−1 (Fig. 6). Fine W phase precipitation in α-Mg matrix by the heat-treatment caused a reduction of solute Y and Zn elements in α-Mg matrix, resulting in improvement of the thermal conductivity.

The high thermal conductivity of the Mg-1.88Zn-0.75Y ternary alloy developed in this study is the same as the high thermal conductivity of a Mg-5.0Al-3.0Ca alloy [55, 56], in both cases, compounds composed of added elements are precipitated from the α-Mg matrix through heat treatment, resulting in a significant increase in thermal conductivity. These results revealed that adding element pairs with negatively large mixing enthalpy is important for improving the thermal conductivity by heat treatment. Therefore, it can be considered that adding element pairs with negatively large mixing enthalpy will become a new material design guideline in developing Mg alloys with high thermal conductivity.
8. (JIMM Young Scientist Best Paper Award) “Chemical Conversion Treatment of AA5083 Aluminum Alloy and AISI 1045 Carbon Steel under Galvanically Coupled Condition in Na2MoO4: Effect of pH on Corrosion Resistance” by Takumi Kosaba, Izumi Muto, Masashi Nishimoto and Yu Sugawara (Vol. 64, No. 2 (2023) pp. 568–577) [7]
For multi-material structures with Al alloy/steel joints, the localized degradation of Al alloys due to galvanic corrosion is one of the serious problems [57–60]. To enhance galvanic corrosion resistance, optimal conditions of chemical conversion treatments for Al alloys have been proposed [61–65]. In terms of the occurrence of localized corrosion on Al alloys, it has been reported that the degradation is initiated at the interface between alloy-matrix and Fe- or Cu-containing intermetallic particles owing to higher cathodic reactivity on these particles [66–68]. However, there is no literature of optimal conditions for Al alloy/steel joints in chemical conversion treatment based on the local electrochemistry around the harmful particles. In this study, to analyze the effect of solution pH of Na2MoO4 chemical conversion treatment for Al alloy/steel joints on corrosion resistance, AA5083 aluminum alloy and AISI 1045 carbon steel were therefore immersed in 50 mM Na2MoO4 at pH ranges of 8–12 under galvanically coupled condition [7]. The galvanic corrosion resistance of the AA5083 alloy connected to the AISI 1045 carbon steel was assessed afterwards, immersing in diluted synthetic seawater. Figure 7 shows the number of localized corrosion damages observed in an electrode area of 10 mm × 10 mm. AA5083 treated at pH 11 was found to be the better corrosion resistance. The oxygen reduction reactivity of bulk Al6(Fe, Mn) suppressed with increasing solution pH of the conversion treatment. The Al6(Fe, Mn) particles on AA5083 became no preferential cathodes, and alkalization through oxygen reduction would not occur when the treatment was proposed above pH 9. Auger electron spectroscopy analysis demonstrated that Mo-accumulation, Fe-removal, and film thickening on the particles of AA5083 treated at pH 11. The suppression of the cathodic reactivity on the Al6(Fe, Mn) particles is attributed to the surface modification, resulting in the improved galvanic corrosion resistance of AA5083.

9. (JIMM Young Scientist Best Paper Award) “Relationship between Cluster-Arranged Nanoplate Formation and Mechanical Properties of Dilute MgYZn Alloys Prepared by Combination of Low-Cooling-Rate Solidification and Extrusion Techniques” by Seitaro Ishizaki, Michiaki Yamasaki, Koji Hagihara, Soya Nishimoto, Taisuke Nakamura and Yoshihito Kawamura (Vol. 64, No. 4 (2023) pp. 756–765) [8]
High-strength and dilute Mg–Y–Zn alloys with cluster-arranged layer/nanoplate (CAL/CANaP) precipitates were developed via combined processes of low-cooling-rate solidification and extrusion techniques [8, 69]. A slow-cooling solidification process with cooling rates ranging from 0.1 to 0.01 K·s−1 produces a “CAL-aggregated region” in which L12-type Y8Zn6 clusters [70–72] are ordered on the basal planes of the α-Mg matrix of the Mg99.2Y0.6Zn0.2 (at%) alloy. The CAL-aggregated region is composed of solo-CAL and CANaP precipitates. As the cooling rate decreased, the area fraction of the CAL-aggregated region increased, and the CANaP in the center grew into a blocky LPSO phase. The enlargement of the CAL-aggregated region increased the CAL/CANaP spacing.
The multimodal microstructure of the extruded Mg99.2Y0.6Zn0.2 alloys prepared from low cooling rate-solidified ingots consisted of three characteristic regions: (i) dynamically recrystallized (DRXed) fine α-Mg grains, (ii) worked coarse α-Mg grains with a CAL-aggregated region, and (iii) worked blocky LPSO grains [73]. The strength and ductility of the extruded Mg–Y–Zn alloys may be controlled by the volume fractions of the worked α-Mg/LPSO and DRXed α-Mg grains, respectively [74]. Figure 8 shows that the area fraction of the worked α-Mg grains region and the kink-boundary dispersion play an essential role in increasing the strength. These two factors may be regulated by the CANaP spacing and area fraction of the CAL-aggregated region; it is desirable to control the CANaP thickness and spacing to approximately 1 µm and ≤0.8 µm, respectively, to form the worked grains in which kink bands are introduced [75–82].

This study demonstrated that multimodal microstructure control is possible even in diluted Mg–Y–Zn alloys without an LPSO phase and that high strength can be achieved by retaining a moderate amount of worked grains with kink boundaries.
10. (JIMM Young Scientist Best Paper Award) “Effects of High-Pressure Press on the Tensile Properties and Morphology of Polypropylene” by Yukino Ito, Shotaro Nishitsuji, Hironari Sano, Masaru Ishikawa, Takashi Inoue and Hiroshi Ito (Vol. 64, No. 4 (2023) pp. 774–779) [9]
In the field of metals, especially in magnesium alloys, a new concept has been reported that introducing a kink by applying compression or other deformation to a material with an LPSO structure [48, 50, 75] in which hard and soft layers are alternately stacked, results in higher strength. Because crystalline polymers are alternately layered with a crystalline phase, the hard layer, and an amorphous phase, the soft layer, it is expected that crystalline polymers can be made stronger if kinks can be introduced by applying compression or other deformation. In this study, the effects of a high-pressure press on the tensile properties and morphology of polypropylene (PP) were investigated. Figure 9 shows that stress as a function of strain for as-mold PP and PP after applying different amounts of pressure. We found that a high-pressure press reduced the strain at break but increased the tensile modulus and the stress at break in the stress–strain curves. Thus, we succeeded in developing high-strength PP using a high-pressure press. In addition, it is found that the tensile properties were isotropic with no directional dependence after press. This implies that the tensile strength can be increased isotropically. Observing the morphology parallel to the press direction by small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS), it was found that the crystal lamellae spread isotropically. Conversely, observation of the morphology perpendicular to the press direction by optical microscopy (OM) and transmission electron microscopy (TEM) revealed the formation of a shear band where deformation was concentrated owing to pressure. In the shear band, it was found that lamella fragmentation occurred and a kinked structure was formed. In this region, the molecular chains may be constrained by pressure, and become a tension state, which leads to the improvement of the mechanical properties.

11. (JIMM Young Scientist Best Paper Award) “Volatile Separation and Recovery of Iridium from Oxygen Evolution Electrodes Using Calcium Oxide” by Kosuke Takahashi, Ryoji Sanekata and Takashi Nagai (Vol. 65, No. 1 (2024), pp. 71–75) [10]
Iridium is a platinum-group metal with unique catalytic properties and chemical stability. Because of these characteristics, the metal is used in the form of iridium–tantalum oxides in the catalytic layer of oxygen evolution electrodes [83, 84]. Recovering Ir from end-of-life products is important because of its low production volume, the uneven geographical distribution of Ir sources, and high supply risks. However, Ir recovery requires its dissolution in aqueous solution using strong acid, making the procedure not only dangerous but also hazardous to the environment [85]. In addition, the dissolution of metals other than Ir in aqueous solution causes a decrease in recovery and purity in separation and refinement. Therefore, the solubility of the acid must be improved while separating only Ir before dissolution [86].
Accordingly, we developed a method to extract only Ir from the catalyst layer of oxygen evolution electrodes and, simultaneously, recover Ir as a Ca–Ir composite oxide that is soluble in hydrochloric acid. Only iridium oxide was volatilized from the catalyst layer of the oxygen evolution electrode at 1373 K in air and contacted with CaO via the gas phase to obtain an Ca-Ir composite oxide (Fig. 10). The composite oxide obtained was dissolved in hydrochloric acid and subsequently analyzed. As a result, the composite oxide was easily dissolved in hydrochloric acid and exhibited a high Ir dissolution rate. In addition, no dissolution of Ta was observed and only Ir could be separated and recovered. This method is useful in terms of efficiency, safety, and cost because only Ir can be recovered from spent electrodes using CaO without using strong acid. Further, Ir is recovered via gas phase, and it is expected that it could be recovered from products other than oxygen evolution electrodes at the same time [10, 21].

12. Editor’s Remarks
JILM is an active companion of Materials Transactions to publish papers related to light metals such as Al, Mg and Ti including their alloys. Submission requires authors to be a member of JILM. Articles of 25–30 per year are published through JILM, which come to about 5% of the total in Materials Transactions. In 2022, a special issue entitled “Aluminium and its Alloys for Zero Carbon Society” was edited by JILM [87], collecting one overview paper [88], two review papers [89, 90] and 24 regular papers [91–114], and published in February, 2023. They were selected with strict review processes among the presentations made in “The 18th International Conference on Aluminium Alloys (ICAA 18)”, held in Toyama, Japan on September 4–8, 2022. In addition, JILM has published comprehensive review papers [115–119] within the last two years, which are listed as follows.
-
(1)
“Grain Refinement of Cast Aluminum by Heterogeneous Nucleation Site Particles with High Lattice Matching” by Watanabe et al. [115].
-
(2)
“Materials Design for Improving Mechanical Properties of Ultra-Lightweight Mg-Li Based Alloys” by Mineta [116].
-
(3)
“Severe Plastic Deformation of Light Metals (Magnesium, Aluminum and Titanium) and Alloys by High-Pressure Torsion: Review of Fundamentals and Mechanical/Functional Properties” by Edalati [117].
-
(4)
“Etching Behavior and Dielectric Film Formation on Aluminum Foil Stocks for Electrolytic Capacitors: A Review” by Osawa [118].
-
(5)
“Deformation Behavior of Aluminum Alloys under Various Stress States: Material Modeling and Testing” by Kuwabara and Barlat [119].
Regarding the 6 awarded papers from JILM, the article by Wang et al. [6] is concerned with Mg-Zn-Y alloys, where thermal conductivities were maximized by controlling the microstructures. It should be noted that, because the thermal properties are important in metallic materials, Materials Transactions published several articles on this topic [120–128]. The rest of the awarded papers are all for Al alloys, where three papers dealt with Al-Zn-Mg alloys and the other two papers with Al-Mg-Si alloys. The Al-Zn-Mg alloys are well known as typical high-strength alloys. The effect of precipitate sizes on dislocation density was investigated by Hirata et al. using an in situ tensile facility in SPring 8 [3]. Crack initiation leading to hydrogen embrittlement was examined by Higa et al. using a 3D facility in SPring 8 [5]. The bendability of Al-Zn-Mn alloys was investigated by Kaharudin et al. from the comparison between a fibrous state and a recrystallized state [1]. The rest of the two studies on the Al-Mg-Si alloys are for nanocluster formation by Kurihara et al. [2] and for hydrogen desorption behavior by Yaegashi et al. [4], both of which significantly affect the strength and ductility of the alloys.
JIMM coordinates the publication system of Materials Transactions for the 14 institutes and societies. It accepts papers with various types of materials including ceramics, semiconductors and polymers as well as metals and alloys as referred to the submission website of Materials Transactions [https://jimm.jp/en/publications/category.html]. The awarded paper by Takahashi et al. dealt with the recovery of Ir which is a rare metal with extremely high cost [10]. In the paper by Ito et al. [9], polypropylene, which is a crystalline polymer, was strengthened for the first time by the formation of kinks after deformation by compression. The two other awarded papers are concerned with Mg-Y-Zn alloys by Ishizaki et al. [8] to enhance the strength and ductility through cluster arranged nanoparticles, and with chemical conversion treatment of Al/steel joints by Kosaba et al. [7] to improve galvanic corrosion resistance of an A5083 alloy. It should be noted that the papers by Ito et al. [9] and Ishizaki et al. [8], were published in a special issue of “Kink-Strengthening of Mille-Feuille Structured Materials” [129] together with other 14 papers [130–143]. In addition, JIMM published a special issue called “Materials Science on High-Entropy Alloys II” [144] and this is in fact the second special issue followed by the first issue entitled “Materials Science on High-Entropy Alloys” [145]. Because the first special issue gained much attention, the second special issue was edited with the total of ten papers [146–155] and published in August 2024 [144]. It should be noted that both special issues were edited so as to introduce outcome of the national research projects from 2018 to 2022 supported by Grant-in-Aid for Scientific Research on Innovative Areas, MEXT Japan.
Apart from such special issues, two more special issues were published in Materials Transactions: one of them is entitled “Superfunctional Nanomaterials by Severe Plastic Deformation” [156] including 33 overview papers [125, 157–188], 16 review papers [189–204], four regular articles [205–208] and one rapid publication [209]. Readers may also find comprehensive summaries for this special issue [210, 211]. The other special issue is entitled “Development and Functionality of Titanium and Its Alloys as Structural, Biocompatible, and Energy Materials” [212], which appeared in May 2025 including one review paper [213] and 19 regular articles [214–232] and this was edited by collaboration between members of JIMM and the Indian Institute of Metals (IIM).
REFERENCES
- 1) A.A. Kaharudin, R. Saeki, M. Takaya, T. Minoda and T. Homma: Influence of Initial Extruded Microstructures of Al–4.4Zn–1.4Mg Alloy Flat Bar on VDA Bendability, Mater. Trans. 64 (2023) 421–428. doi:10.2320/matertrans.MT-LA2022015
- 2) K. Kurihara, I. Lobzenko, T. Tsuru and A. Serizawa: Effects of Local Bonding between Solute Atoms and Vacancy on Formation of Nanoclusters in Al–Mg–Si Alloys, Mater. Trans. 64 (2023) 1930–1936. doi:10.2320/matertrans.MT-L2023006
- 3) M. Hirata, K. Iwata, D. Okai and H. Adachi: Effect of Precipitation Size on Dislocation Density Change during Tensile Deformation in Al–Zn–Mg Alloy, Mater. Trans. 64 (2023) 2584–2590. doi:10.2320/matertrans.MT-L2023010
- 4) S. Yaegashi, K. Shimizu, Y. Kamada, H. Toda, H. Fujihara, M. Uesugi and A. Takeuchi: Growth Behavior of Pores and Hydrogen Desorption Behavior in Pure Aluminum and A6061 Aluminum Alloys, Mater. Trans. 65 (2024) 85–92. doi:10.2320/matertrans.MT-L2023017
- 5) R. Higa, H. Fujihara, H. Toda, M. Kobayashi, K. Ebihara and A. Takeuchi: Multi-Modal 3D Image-Based Simulation of Hydrogen Embrittlement Crack Initiation in Al-Zn-Mg Alloy, Mater. Trans. 65 (2024) 899–906. doi:10.2320/matertrans.MT-L2024007
- 6) Y. Wang, S. Inoue and Y. Kawamura: Mg-1.88Zn-0.75Y Cast Alloys with High Thermal Conductivity of 141 Wm−1K−1, Mater. Trans. 65 (2024) 1358–1366. doi:10.2320/matertrans.MT-L2024015
- 7) T. Kosaba, I. Muto, M. Nishimoto and Y. Sugawara: Chemical Conversion Treatment of AA5083 Aluminum Alloy and AISI 1045 Carbon Steel under Galvanically Coupled Condition in Na2MoO4: Effect of pH on Corrosion Resistance, Mater. Trans. 64 (2023) 568–577. doi:10.2320/matertrans.MT-M2022163
- 8) S. Ishizaki, M. Yamasaki, K. Hagihara, S. Nishimoto, T. Nakamura and Y. Kawamura: Relationship between Cluster-Arranged Nanoplate Formation and Mechanical Properties of Dilute Mg–Y–Zn Alloys Prepared by Combination of Low-Cooling-Rate Solidification and Extrusion Techniques, Mater. Trans. 64 (2023) 756–765. doi:10.2320/matertrans.MT-MD2022015
- 9) Y. Ito, S. Nishitsuji, H. Sano, M. Ishikawa, T. Inoue and H. Ito: Effects of High-Pressure Press on the Tensile Properties and Morphology of Polypropylene, Mater. Trans. 64 (2023) 774–779. doi:10.2320/matertrans.MT-MD2022014
- 10) K. Takahashi, R. Sanekata and T. Nagai: Volatile Separation and Recovery of Iridium from Oxygen Evolution Electrodes Using Calcium Oxide, Mater. Trans. 65 (2024) 71–75. doi:10.2320/matertrans.MT-M2023140
- 11) Z. Horita: Best Papers Awarded in 2019 and 2020 by Materials Transactions, Mater. Trans. 62 (2021) 1046–1051. doi:10.2320/matertrans.MT-M2021008
- 12) Z. Horita: Best Papers Awarded in 2021 by Materials Transactions, Mater. Trans. 63 (2022) 965–974. doi:10.2320/matertrans.MT-M2022021
- 13) Z. Horita: Best Papers Awarded in 2022 by Materials Transactions, Mater. Trans. 64 (2023) 2006–2013. doi:10.2320/matertrans.MT-M2023035
- 14) Z. Horita: Best Papers Awarded by JILM and JSTP in Materials Transactions, Mater. Trans. 64 (2023) 2838–2844. doi:10.2320/matertrans.MT-M2023141
- 15) Z. Horita: Best Papers Awarded in 2023 in Materials Transactions, Mater. Trans. 65 (2024) 1588–1599. doi:10.2320/matertrans.MT-M2024076
- 16) K. Kurihara, I. Lobzenko, T. Tsuru and A. Serizawa: Effects of local bonding between solute atoms and vacancy on formation of nanoclusters in Al-Mg-Si alloys, J. JILM 72 (2022) 47–53. doi:10.2464/jilm.72.47
- 17) M. Hirata, K. Iwata, D. Okai and H. Adachi: Effect of precipitation size on dislocation density change during tensile deformation in Al-Zn-Mg alloy, J. JILM 71 (2021) 343–348. doi:10.2464/jilm.71.343
- 18) S. Yaegashi, K. Shimizu, Y. Kamada, H. Toda, H. Fujihara, M. Uesugi and A. Takeuchi: Growth behavior of pores and hydrogen desorption behavior in pure aluminum and A6061 aluminum alloys, J. JILM 73 (2023) 212–217. doi:10.2464/jilm.73.212
- 19) R. Higa, H. Fujihara, H. Toda, M. Kobayashi, K. Ebihara and A. Takeuchi: Multi-modal 3D image-based simulation of hydrogen embrittlement crack initiation in Al-Zn-Mg alloy, J. JILM 73 (2023) 530–536. doi:10.2464/jilm.73.530
- 20) Y. Wang, S. Inoue and Y. Kawamura: Mg-1.88Zn-0.75Y cast alloys with high thermal conductivity of 141 Wm−1K−1, J. JILM 74 (2024) 180–187. doi:10.2464/jilm.74.180
- 21) K. Takahashi, R. Sanekata and T. Nagai: Volatile Separation and Recovery of Iridium from Oxygen Evolution Electrodes Using Calcium Oxide, J. Japan Inst. Met. Mater. 87 (2023) 243–248. doi:10.2320/jinstmet.J2022044
- 22) Verband der Automobilindustrie e.V., VDA 238-100 test specification, (2010).
- 23) M. Nakaya, S. Kanetada and M. Tsunezawa: Hot-dip Galvannealed Steel Sheet of 980 MPa Grade Having Excellent Deformability in Axial Crush, Kobelco Technol. Rev. 38 (2020) 28–31.
- 24) E. Hirosawa: Fiber Textures of Extruded Aluminum Alloy Rod, Trans. JIM 5 (1964) 235–237. doi:10.2320/matertrans1960.5.235
- 25) H. Takeda, A. Hibino and K. Takata: Influence of Crystal Orientations on the Bendability of an Al-Mg-Si Alloy, Mater. Trans. 51 (2010) 614–619. doi:10.2320/matertrans.L-MG200951
- 26) A. Serizawa, S. Hirosawa and T. Sato: Three-Dimensional Atom Probe Characterization of Nanoclusters Responsible for Multistep Aging Behavior of an Al-Mg-Si Alloy, Metall. Mater. Trans. A 39 (2008) 243–251. doi:10.1007/s11661-007-9438-5
- 27) C.D. Marioara, S.J. Andersen, C. Hell, J. Frafjord, J. Friis, R. Bjørge, I.G. Ringdalen, O. Engler and R. Holmestad: Atomic structure of clusters and GP-zones in an Al-Mg-Si alloy, Acta Mater. 269 (2024) 119811. doi:10.1016/j.actamat.2024.119811
- 28) S. Tanaka and H. Adachi: Soft X-ray XAFS Analysis of Cluster Formation Process during 353 K Aging in Al–Mg–Si Alloys, Mater. Trans. 64 (2023) 458–466. doi:10.2320/matertrans.MT-LA2022004
- 29) S. Tanaka, H. Adachi and T. Nonomura: Soft X-ray XAFS Analysis of Cluster Formation Behavior during Natural Aging on an Al–Mg–Si Alloy, Mater. Trans. 62 (2021) 1448–1456. doi:10.2320/matertrans.MT-L2021004
- 30) K. Inoue, K. Takata, K. Ichitani and Y. Shirai: Vacancy Behavior during Aging at 50 and 100°C in Al–Mg–Si Alloys with Excess Si Studied by Positron Annihilation Spectroscopy, Mater. Trans. 60 (2019) 2255–2259. doi:10.2320/matertrans.L-M2019846
- 31) C. Ravi and C. Wolverton: First-principles study of crystal structure and stability of Al–Mg–Si–(Cu) precipitates, Acta Mater. 52 (2004) 4213–4227. doi:10.1016/j.actamat.2004.05.037
- 32) N. Sandberg, M. Slabanja and R. Holmestad: Ab initio simulations of clustering and precipitation in Al–Mg–Si alloys, Comput. Mater. Sci. 40 (2007) 309–318. doi:10.1016/j.commatsci.2007.01.001
- 33) H. Adachi, H. Mizowaki, M. Hirata, D. Okai and H. Nakanishi: Measurement of Dislocation Density Change during Tensile Deformation in Coarse-Grained Aluminum by In-Situ XRD Technique with Tester Oscillation, Mater. Trans. 62 (2021) 62–68. doi:10.2320/matertrans.L-M2020861
- 34) H. Adachi, Y. Miyajima, M. Sato and N. Tsuji: Evaluation of Dislocation Density for 1100 Aluminum with Different Grain Size during Tensile Deformation by Using In-Situ X-ray Diffraction Technique, Mater. Trans. 56 (2015) 671–678. doi:10.2320/matertrans.L-M2015803
- 35) H. Adachi, K. Osamura, S. Ochiai, J. Kusui and K. Yokoe: Mechanical property of nanoscale precipitate hardening aluminum alloys, Scr. Mater. 44 (2001) 1489–1492. doi:10.1016/S1359-6462(01)00715-1
- 36) Y. Irinouchi, H. Toda, T. Sakai, T. Kobayashi and L. Wang: Improvement of mechanical properties by high temperature solution treatment in an AC4CH aluminum cast alloy, J. JILM 55 (2005) 159–163. doi:10.2464/jilm.55.159
- 37) M. Harada, T. Suzuki and I. Fukui: Effect of Microporosity and Microstructure on Mechanical Properties of Aluminum Casting Alloys, Imono 55 (1983) 742–750. doi:10.11279/imono.55.12_742
- 38) H. Toda, H. Oogo, K. Horikawa, K. Uesugi, A. Takeuchi, Y. Suzuki, M. Nakazawa, Y. Aoki and M. Kobayashi: The True Origin of Ductile Fracture in Aluminum Alloys, Metall. Mater. Trans. A 45 (2014) 765–776. doi:10.1007/s11661-013-2013-3
- 39) T. Izumi and G. Itoh: Thermal Desorption Spectroscopy Study on the Hydrogen Trapping States in a Pure Aluminum, Mater. Trans. 52 (2011) 130–134. doi:10.2320/matertrans.L-M2010825
- 40) K. Shimizu, H. Toda, K. Uesugi and A. Takeuchi: Local Deformation and Fracture Behavior of High-Strength Aluminum Alloys Under Hydrogen Influence, Metall. Mater. Trans. A 51 (2020) 1–19. doi:10.1007/s11661-019-05304-y
- 41) H. Toda, K. Shimizu, K. Uesugi, Y. Suzuki and M. Kobayashi: Application of Dual-Energy K-Edge Subtraction Imaging to Assessment of Heat Treatments in Al-Cu Alloys, Mater. Trans. 51 (2010) 2045–2048. doi:10.2320/matertrans.L-M2010819
- 42) M. Yamaguchi, K.-I. Ebihara, M. Itakura, T. Tsuru, K. Matsuda and H. Toda: First-principles calculation of multiple hydrogen segregation along aluminum grain boundaries, Comput. Mater. Sci. 156 (2019) 368–375. doi:10.1016/j.commatsci.2018.10.015
- 43) R. Miresmaeili, N. Saintier, H. Notsu, J.M. Olive and H. Kanayama: One-Way Coupled Crystal Plasticity-Hydrogen Diffusion Simulation on Artificial Microstructure, J. Comput. Sci. Technol. 4 (2010) 105–120. doi:10.1299/jcst.4.105
- 44) T. Tsuru, K. Shimizu, M. Yamaguchi, M. Itakura, K. Ebihara, A. Bendo, K. Matsuda and H. Toda: Hydrogen-accelerated spontaneous microcracking in high-strength aluminium alloys, Sci. Rep. 10 (2020) 1998. doi:10.1038/s41598-020-58834-6
- 45) G.A. Young and J.R. Scully: The effects of test temperature, temper, and alloyed copper on the hydrogen-controlled crack growth rate of an Al-Zn-Mg-(Cu) alloy, Metall. Mater. Trans. A 33A (2002) 1167–1181. doi:10.1007/s11661-002-0218-y
- 46) Y. Kawamura, K. Hayashi, A. Inoue and T. Masumoto: Rapidly Solidified Powder Metallurgy Mg97Zn1Y2Alloys with Excellent Tensile Yield Strength above 600 MPa, Mater. Trans. 42 (2001) 1172–1176. doi:10.2320/matertrans.42.1172
- 47) Y. Kawamura and S. Yoshimoto: Magnesium Technology 2005, ed. by H.I. Kaplan, (TMS, Warrendale, PA, 2005) pp. 499–502.
- 48) S. Yoshimoto, M. Yamasaki and Y. Kawamura: Microstructure and Mechanical Properties of Extruded Mg-Zn-Y Alloys with 14H Long Period Ordered Structure, Mater. Trans. 47 (2006) 959–965. doi:10.2320/matertrans.47.959
- 49) Y. Kawamura and M. Yamasaki: Formation and Mechanical Properties of Mg97Zn1RE2 Alloys with Long-Period Stacking Ordered Structure, Mater. Trans. 48 (2007) 2986–2992. doi:10.2320/matertrans.MER2007142
- 50) T. Morikawa, K. Kaneko, K. Higashida, D. Kinoshita, M. Takenaka and Y. Kawamura: The Fine-Grained Structure in Magnesium Alloy Containing Long-Period Stacking Order Phase, Mater. Trans. 49 (2008) 1294–1297. doi:10.2320/matertrans.MC2007110
- 51) W. Yang and X. Guo: High strength magnesium alloy with α-Mg and W-phase processed by hot extrusion, Trans. Nonferrous Met. Soc. China 21 (2011) 2358–2364. doi:10.1016/S1003-6326(11)61020-0
- 52) H. Jiang, X. Qiao, C. Xu, S. Kamado, K. Wu and M. Zheng: Influence of size and distribution of W phase on strength and ductility of high strength Mg-5.1Zn-3.2Y-0.4Zr-0.4Ca alloy processed by indirect extrusion, J. Mater. Sci. Technol. 34 (2018) 277–283. doi:10.1016/j.jmst.2017.11.022
- 53) D.H. Bae, S.H. Kim, W.T. Kim and D.H. Kim: High Strength Mg-Zn-Y Alloy Containing Quasicrystalline Particles, Mater. Trans. 42 (2001) 2144–2147. doi:10.2320/matertrans.42.2144
- 54) D.H. Bae, M.H. Lee, K.T. Kim, W.T. Kim and D.H. Kim: Application of quasicrystalline particles as a strengthening phase in Mg–Zn–Y alloys, J. Alloy. Compd. 342 (2002) 445–450. doi:10.1016/S0925-8388(02)00273-6
- 55) Y. Kawamura, K. Ougi, S. Inoue, T. Kiguchi, M. Takafuji, H. Ihara and D.S. Shih: Advanced Mg–Al–Ca Alloys with Combined Properties of High Thermal Conductivity, High Mechanical Strength and Non-Flammability, Mater. Trans. 63 (2022) 118–127. doi:10.2320/matertrans.MT-M2021195
- 56) Y. Kawamura, N. Osaki, T. Kiguchi, A. Vinogradov and S. Inoue: Advanced wrought Mg-4.5Al-2.5Ca-0.02Mn (at%) alloys with exceptional balance of high thermal conductivity, yield strength, ductility, nonflammability, and corrosion resistance, J. Alloy. Compd. 978 (2024) 173299. doi:10.1016/j.jallcom.2023.173299
- 57) T. Kosaba, I. Muto and Y. Sugawara: Effect of anodizing on galvanic corrosion resistance of Al coupled to Fe or type 430 stainless steel in diluted synthetic seawater, Corros. Sci. 179 (2021) 109145. doi:10.1016/j.corsci.2020.109145
- 58) J. Jang, A. Ooi and E. Tada: Effect of NaCl Concentration on Galvanic Corrosion Behavior of Zinc and A1050 Couples, Electrochemistry 92 (2024) 087007. doi:10.5796/electrochemistry.24-00061
- 59) M. Kadowaki, H. Katayama and M. Yamamoto: Galvanic current analysis of AA6016/SM490 couple using experimental and numerical simulation data in various NaCl solutions, Corros. Sci. 211 (2023) 110918. doi:10.1016/j.corsci.2022.110918
- 60) M. Kadowaki, H. Katayama and M. Yamamoto: Corrosion behavior of AA6016/SM490 galvanic couple in NaCl-containing droplets: Effect of Fe species on galvanic corrosion acceleration, Corros. Sci. 218 (2023) 111190. doi:10.1016/j.corsci.2023.111190
- 61) T. Kosaba, I. Muto, M. Nishimoto and Y. Sugawara: Role of KMnO4–NaF Treatment in Galvanic Corrosion Resistance of AA5083 Coupled to Steel, Mater. Trans. 64 (2023) 896–903. doi:10.2320/matertrans.MT-L2022021
- 62) K. Ebina, M. Nishimoto, I. Muto and Y. Sugawara: Enhancing pitting corrosion resistance of AA7075 through cathodic deposition of Mn-accumulated film on intermetallic particles containing copper, Corros. Sci. 220 (2023) 111299. doi:10.1016/j.corsci.2023.111299
- 63) H. Kakinuma, I. Muto, Y. Oya, T. Momii, Y. Sugawara and N. Hara: Improving the Pitting Corrosion Resistance of AA1050 Aluminum by Removing Intermetallic Particles during Conversion Treatments, Mater. Trans. 62 (2021) 1160–1167. doi:10.2320/matertrans.MT-M2021071
- 64) S. Furukawa, K. Hirasawa, Y. Tsuji, K. Suzuki and M. Chiba: Self-Healing Coatings with Double-Layered Structure for Corrosion Protection of Aluminum Alloys, Mater. Trans. 64 (2023) 473–478. doi:10.2320/matertrans.MT-LA2022050
- 65) L. Pao, M. Nishimoto, I. Muto and Y. Sugawara: Electrochemical Surface Modification of Al8Co19Cr23Fe32Ni18 in H2SO4: A High-Entropy Alloy with High Pitting Corrosion Resistance and High Oxidation Resistance, Mater. Trans. 64 (2023) 2286–2295. doi:10.2320/matertrans.MT-M2023088
- 66) T. Kosaba, I. Muto and Y. Sugawara: Galvanic Corrosion of AA5083/Fe in Diluted Synthetic Seawater: Effect of Anodizing on Local Electrochemistry on and around Al6(Fe,Mn) on Al-Matrix, J. Electrochem. Soc. 169 (2022) 020550. doi:10.1149/1945-7111/ac5301
- 67) T. Kosaba, M. Nishimoto and I. Muto: Elucidation of the trigger for trenching around Al6(Fe, Mn) on AA5083 aluminum alloy in diluted synthetic seawater, Corros. Sci. 239 (2024) 112362. doi:10.1016/j.corsci.2024.112362
- 68) H. Yoshida, M. Nishimoto, I. Muto, M. Takaya, Y. Kyo, T. Minoda and Y. Sugawara: Difference in the Precursory Process of the Intergranular Corrosion of Aged Al-Cu and Al-Cu-Mg Alloys in 0.1 M NaCl, J. Electrochem. Soc. 170 (2023) 111501. doi:10.1149/1945-7111/ad0666
- 69) Y. Kawamura, H. Yamagata, S. Inoue, T. Kiguchi and K. Chattopadhyay: Kink bands and strengthening of millefeuille-structured magnesium alloys by cluster-arranged nanoplates (CANaPs): The case of Mg-0.4Zn-1.0Y alloy, J. Alloy. Compd. 939 (2023) 168607. doi:10.1016/j.jallcom.2022.168607
- 70) D. Egusa and E. Abe: The structure of long period stacking/order Mg–Zn–RE phases with extended non-stoichiometry ranges, Acta Mater. 60 (2012) 166–178. doi:10.1016/j.actamat.2011.09.030
- 71) K. Kimura, D. Egusa, K. Hagihara, N. Happo, N. Kawamura, H. Tajiri, K. Hayashi and E. Abe: Local Structural Analysis around Solute-Element in Annealed Mg99.2Zn0.2Y0.6 Alloy Using X-ray Fluorescence Holography, Mater. Trans. 64 (2023) 750–755. doi:10.2320/matertrans.MT-MD2022009
- 72) H. Okuda, Y. Maegawa, K. Shimotsuji, S. Inoue, Y. Kawamura and S. Kimura: Microstructure Evolution in Mg98.6Y1Zn0.4 Alloys and the Development by Hot Deformation Examined by Synchrotron Radiation Small- and Wide-Angle Scattering, Mater. Trans. 64 (2023) 780–784. doi:10.2320/matertrans.MT-MD2022007
- 73) M. Yamasaki, K. Hashimoto, K. Hagihara and Y. Kawamura: Effect of multimodal microstructure evolution on mechanical properties of Mg–Zn–Y extruded alloy, Acta Mater. 59 (2011) 3646–3658. doi:10.1016/j.actamat.2011.02.038
- 74) K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda and Y. Umakoshi: Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy, Acta Mater. 58 (2010) 6282–6293. doi:10.1016/j.actamat.2010.07.050
- 75) K. Hagihara, N. Yokotani and Y. Umakoshi: Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure, Intermetallics 18 (2010) 267–276. doi:10.1016/j.intermet.2009.07.014
- 76) K. Hagihara, Y. Sugino, Y. Fukusumi, Y. Umakoshi and T. Nakano: Plastic Deformation Behavior of Mg12ZnY LPSO-Phase with 14H-Typed Structure, Mater. Trans. 52 (2011) 1096–1103. doi:10.2320/matertrans.MC201007
- 77) M. Yamasaki, K. Hagihara, S. Inoue, J.P. Hadorn and Y. Kawamura: Crystallographic classification of kink bands in an extruded Mg–Zn–Y alloy using intragranular misorientation axis analysis, Acta Mater. 61 (2013) 2065–2076. doi:10.1016/j.actamat.2012.12.026
- 78) T. Matsumoto, M. Yamasaki, K. Hagihara and Y. Kawamura: Configuration of dislocations in low-angle kink boundaries formed in a single crystalline long-period stacking ordered Mg-Zn-Y alloy, Acta Mater. 151 (2018) 112–124. doi:10.1016/j.actamat.2018.03.034
- 79) S. Yamasaki, T. Tokuzumi, W. Li, M. Mitsuhara, K. Hagihara, T. Fujii and H. Nakashima: Kink Formation Process in Long-Period Stacking Ordered Mg-Zn-Y Alloy, Acta Mater. 195 (2020) 25–34. doi:10.1016/j.actamat.2020.04.051
- 80) K. Hagihara, T. Tokunaga, K. Yamamoto, M. Yamasaki, T. Mayama, T. Shioyama, Y. Kawamura and T. Nakano: Unified Understanding of Strengthening Mechanisms Acting in Mg/LPSO Two-Phase Extruded Alloys with Varying LPSO Phase Volume Fraction, Mater. Trans. 64 (2023) 720–729. doi:10.2320/matertrans.MT-MD2022002
- 81) Y. Zhao, H. Gao, Z. Guo, D. Egusa, E. Abe and S. Hata: Microstructure and Its Evolution of Solute-Enriched Stacking Faults in Kink-Deformed Mg97Zn1Y2, Mater. Trans. 65 (2024) 274–281. doi:10.2320/matertrans.MT-M2023186
- 82) Y. Urakawa, D. Egusa, M. Itakura and E. Abe: Anomalous Local Lattice Softening around Kink Boundaries in a Mille-Feuille Structured Dilute Mg–Zn–Y Alloy, Mater. Trans. 64 (2023) 1065–1071. doi:10.2320/matertrans.MT-MD2022021
- 83) M. Morimitsu: Oxide Coated Titanium Electrode for Oxygen Evolution, J. MMIJ 130 (2014) 415–420. doi:10.2473/journalofmmij.130.415
- 84) H. Higobashi: Highly-Durable Iridium Oxide Anode, J. Surf. Finish. Soc. Jpn. 66 (2015) 3–5. doi:10.4139/sfj.66.3
- 85) C. Horike, K. Morita and T.H. Okabe: Dissolution of Platinum by Hydrochloric Acid: Development of Environmentally Sound New Recycling Process, Materia Japan 52 (2013) 71–73. doi:10.2320/materia.52.71
- 86) J. Shibata and A. Okuda: Recycling Technology of Precious Metals, Shigen-to-Sozai 118 (2002) 1–8. doi:10.2473/shigentosozai.118.1
- 87) K. Kitazono, S. Hirosawa, K. Matsuda and S. Kumai: PREFACE, Mater. Trans. 64 (2023) 318. doi:10.2320/matertrans.MPR2023902
- 88) S. Kumai: Role and Potential of Aluminium and Its Alloys for a Zero-Carbon Society, Mater. Trans. 64 (2023) 319–333. doi:10.2320/matertrans.MT-LA2022009
- 89) K. Kitazono, R. Akimoto and M. Iguchi: Design and Applications of Additively Manufactured Porous Aluminum Alloys, Mater. Trans. 64 (2023) 334–340. doi:10.2320/matertrans.MT-LA2022051
- 90) H. Yoshida: History of the Development of Extra Super Duralumin and Future Research Issues of Al–Zn–Mg Alloys, Mater. Trans. 64 (2023) 341–351. doi:10.2320/matertrans.MT-LA2022019
- 91) T. Bergh, H.W. Anes, R. Aune, S. Wenner, R. Holmestad, X. Ren and P.E. Vullum: Intermetallic Phase Layers in Cold Metal Transfer Aluminium-Steel Welds with an Al–Si–Mn Filler Alloy, Mater. Trans. 64 (2023) 352–359. doi:10.2320/matertrans.MT-LA2022046
- 92) Q. Du, K. Ellingsen, M. M’Hamdi, A. Marthinsen and K.O. Tveito: The Integration of Neural Network and High Throughput Multi-Scale Simulation for Establishing a Digital Twin for Aluminium Billet DC-Casting, Mater. Trans. 64 (2023) 360–365. doi:10.2320/matertrans.MT-LA2022038
- 93) K. Yamazaki and T. Haga: Effect of Casting Conditions on Surface Defect and Segregation of Strips Cast by a High-Speed Twin-Roll Caster, Mater. Trans. 64 (2023) 366–372. doi:10.2320/matertrans.MT-LA2022012
- 94) S. Kajimura, S. Kurotatsu, T.H. Nguyen, Y. Harada, S. Muraishi and S. Kumai: Effect of Nozzle Shape on Periodic Surface Patterns of Al–3 mass% Si Alloy Strips Fabricated by Vertical-Type High-Speed Twin-Roll Casting, Mater. Trans. 64 (2023) 373–378. doi:10.2320/matertrans.MT-LA2022014
- 95) Y. Takehara, Y. Ito, T.H. Nguyen, Y. Harada, S. Muraishi and S. Kumai: Effect of Homogenization Heat Treatment on Elongation Anisotropy in Cold-Rolled and Annealed Al–Si Alloy Sheets Fabricated from Vertical-Type High-Speed Twin-Roll Cast Strips, Mater. Trans. 64 (2023) 379–384. doi:10.2320/matertrans.MT-LA2022017
- 96) Y. Shinomiya, J. Yamamoto, K. Kato, H. Ono, K. Yamaguchi and K. Komori: Thermodynamics of Formation of Al3Fe Inter-Metallic Compound for Fe Removal from Molten Al–Mg Alloy, Mater. Trans. 64 (2023) 385–391. doi:10.2320/matertrans.MT-LA2022025
- 97) K. Kato, Y. Hanai, H. Ono, K. Yamaguchi and K. Komori: Thermodynamics of Formation of Al6Mn Inter-Metallic Compound for Mn Removal from Molten Al–Mg Alloy, Mater. Trans. 64 (2023) 392–397. doi:10.2320/matertrans.MT-LA2022027
- 98) P. Shurkin, G. Scamans, N. Barekar, L. Hou, T. Subroto and C. Barbatti: Phase Composition and Microstructure of High Strength AA6xxx Aluminium Alloys with Nickel Additions, Mater. Trans. 64 (2023) 398–405. doi:10.2320/matertrans.MT-LA2022047
- 99) D. Li, K. Liu and X.-G. Chen: Evolution of Microstructure and Elevated-Temperature Properties during Thermal Exposure with Transition Elements (V, Zr and Mo) in Al–Si 356 Type Cast Alloys, Mater. Trans. 64 (2023) 406–413. doi:10.2320/matertrans.MT-LA2022003
- 100) M. Yamashita, K. Sugiura and M. Nikawa: Punchless Piecing Process of Aluminum Tube Wall by Impulsive Water Pressure, Mater. Trans. 64 (2023) 414–420. doi:10.2320/matertrans.MT-LA2022007
- 101) A.A. Kaharudin, R. Saeki, M. Takaya, T. Minoda and T. Homma: Influence of Initial Extruded Microstructures of Al–4.4Zn–1.4Mg Alloy Flat Bar on VDA Bendability, Mater. Trans. 64 (2023) 421–428. doi:10.2320/matertrans.MT-LA2022015
- 102) N. Saruwatari, H. Kagami and Y. Nakayama: Effect of Short-Time Heating after ECAP Processing on Mechanical Properties of 6061 Aluminum Alloy, Mater. Trans. 64 (2023) 429–435. doi:10.2320/matertrans.MT-LA2022028
- 103) T. Komatsu, T. Masuda, Y. Tang, I.F. Mohamed, M. Yumoto, Y. Takizawa and Z. Horita: Production of Ultrafine-Grained Aluminum Alloys in Upsized Sheets Using Process of Incremental Feeding High-Pressure Sliding (IF-HPS), Mater. Trans. 64 (2023) 436–442. doi:10.2320/matertrans.MT-LA2022032
- 104) M. Takaya, K. Ichitani and T. Minoda: Effects of Sc and Zr Addition on the Mechanical Properties of 7000 Series Aluminum Alloys, Mater. Trans. 64 (2023) 443–447. doi:10.2320/matertrans.MT-LA2022041
- 105) Y. Tang, Y. Tomita and Z. Horita: Mechanical Properties and Microstructures of Highly Fe-Containing Al–Mg–Si Alloys Processed by Severe Plastic Deformation under High Pressure, Mater. Trans. 64 (2023) 448–457. doi:10.2320/matertrans.MT-LA2022054
- 106) S. Tanaka and H. Adachi: Soft X-ray XAFS Analysis of Cluster Formation Process during 353 K Aging in Al–Mg–Si Alloys, Mater. Trans. 64 (2023) 458–466. doi:10.2320/matertrans.MT-LA2022004
- 107) Z. Guo, N. Saunders and J. Hu: Modelling Age Hardening of Aluminium Alloys with Consideration of GP Zones or Clusters, Mater. Trans. 64 (2023) 467–472. doi:10.2320/matertrans.MT-LA2022037
- 108) S. Furukawa, K. Hirasawa, Y. Tsuji, K. Suzuki and M. Chiba: Self-Healing Coatings with Double-Layered Structure for Corrosion Protection of Aluminum Alloys, Mater. Trans. 64 (2023) 473–478. doi:10.2320/matertrans.MT-LA2022050
- 109) M. Watanabe, Y. Sano and S. Kumai: Interfacial Microstructure and Strength of Magnetic Pulse Welded A5052 Aluminum Alloy/SPCC Steel Lap Joint, Mater. Trans. 64 (2023) 479–484. doi:10.2320/matertrans.MT-LA2022018
- 110) M. Raturi and A. Bhattacharya: Appraising Tool Wear during Secondary Heating Assisted Dissimilar Friction Stir Welding between 6061 and 7075 Aluminium Alloys, Mater. Trans. 64 (2023) 485–491. doi:10.2320/matertrans.MT-LA2022034
- 111) N. Okano, N. Takata, A. Suzuki and M. Kobashi: Effects of Mn and Cu Additions on Solidification Microstructure and High-Temperature Strength of Cast Al–Fe Binary Alloy, Mater. Trans. 64 (2023) 492–499. doi:10.2320/matertrans.MT-LA2022010
- 112) T. Haga and M. Furukawa: In-Line Hot Rolling of Al–Mg Strip Casts Using Unequal-Diameter Twin-Roll Caster, Mater. Trans. 64 (2023) 500–505. doi:10.2320/matertrans.MT-LA2022016
- 113) M. Nishida, S. Taniguchi, Z. Su, M. Sunda and M. Murata: Effects of Strain Rate on Stress-Strain Curves in 2024 Aluminum Alloy After Solution Heat Treatment, Mater. Trans. 64 (2023) 506–513. doi:10.2320/matertrans.MT-LA2022020
- 114) P. Ma, T. Masuda, S. Hirosawa and Z. Horita: Development of High-Strength Al–Cu–Mg Alloy by Combined Application of High-Pressure Torsion and Aging Treatment, Mater. Trans. 64 (2023) 514–521. doi:10.2320/matertrans.MT-LA2022049
- 115) Y. Watanabe, M. Mihara-Narita and H. Sato: Grain Refinement of Cast Aluminum by Heterogeneous Nucleation Site Particles with High Lattice Matching, Mater. Trans. 64 (2023) 1083–1097. doi:10.2320/matertrans.MT-L2022026
- 116) T. Mineta: Review - Materials Design for Improving Mechanical Properties of Ultra-Lightweight Mg-Li Based Alloys, Mater. Trans. 65 (2024) 455–465. doi:10.2320/matertrans.MT-L2023021
- 117) K. Edalati: Severe Plastic Deformation of Light Metals (Magnesium, Aluminum and Titanium) and Alloys by High-Pressure Torsion: Review of Fundamentals and Mechanical/Functional Properties, Mater. Trans. 65 (2024) 466–480. doi:10.2320/matertrans.MT-L2023022
- 118) N. Osawa: Etching Behavior and Dielectric Film Formation on Aluminum Foil Stocks for Electrolytic Capacitors: A Review, Mater. Trans. 65 (2024) 825–836. doi:10.2320/matertrans.MT-L2024006
- 119) T. Kuwabara and F. Barlat: Deformation Behavior of Aluminum Alloys under Various Stress States: Material Modeling and Testing, Mater. Trans. 65 (2024) 1193–1217. doi:10.2320/matertrans.MT-L2024010
- 120) D. Wu, K. Sugio and G. Sasaki: Effective Thermal Conductivity and Thermal Resistance of Electroless Copper Plated Carbon Fiber and Fe Composite, Mater. Trans. 64 (2023) 586–595. doi:10.2320/matertrans.MT-M2022123
- 121) J. Xiong, T. Kinoshita, Y. Choi, K. Matsugi, Y. Hisazato and N. Fujiwara: Thermal Properties of Carbon Nanofiber Sheet for Thermal Interface Materials under High Temperature and Humidity, Mater. Trans. 64 (2023) 665–671. doi:10.2320/matertrans.MT-M2022136
- 122) D. Wu, K. Sugio and G. Sasaki: Estimation of Effective Thermal Conductivity of Copper-Plated Carbon Fibers Reinforced Iron-Based Composites by 2D Image Analysis, Mater. Trans. 64 (2023) 974–982. doi:10.2320/matertrans.MT-M2022153
- 123) Q. Kong and Y. Shibuta: High-Precision Prediction of Thermal Conductivity of Metals by Molecular Dynamics Simulation in Combination with Machine Learning Approach, Mater. Trans. 64 (2023) 1241–1249. doi:10.2320/matertrans.MT-M2022204
- 124) D. Wu, T. Morimoto, K. Sugio and G. Sasaki: Preparation and Thermal Conductivity of Copper Plated Carbon Fiber Dispersed Steel Matrix Composites, Mater. Trans. 64 (2023) 1205–1209. doi:10.2320/matertrans.MT-D2022010
- 125) Y. Ikoma: Structural and Functional Properties of Si and Related Semiconducting Materials Processed by High-Pressure Torsion, Mater. Trans. 64 (2023) 1346–1352. doi:10.2320/matertrans.MT-MF2022031
- 126) Y. Hideshima, F. Maeda, T. Fukuta and K. Ozaki: Effect of Graphite Addition on Microstructure, Mechanical Properties and Thermal Properties of Injection Molded AZ91D Alloy, Mater. Trans. 65 (2024) 374–380. doi:10.2320/matertrans.MT-M2023196
- 127) Q. Kong and Y. Shibuta: Advancing Thermal Conductivity Prediction of Metallic Materials by Integrating Molecular Dynamics Simulation with Machine Learning, Mater. Trans. 65 (2024) 790–797. doi:10.2320/matertrans.MT-M2024021
- 128) M. Murata, M. Suzuki, K. Aoyama, K. Nagase, H. Ohshima, A. Yamamoto, Y. Hasegawa and T. Komine: Measurements of Thermoelectric Properties of Identical Bi-Sb Sample in Magnetic Fields and Influence of Sample Geometry, Mater. Trans. 65 (2024) 1162–1169. doi:10.2320/matertrans.MT-E2024001
- 129) E. Abe, T. Fujii and Y. Kawamura: PREFACE, Mater. Trans. 64 (2023) 715. doi:10.2320/matertrans.MPR2023903
- 130) S. Kimura, K. Sumitani and K. Kajiwara: Two-Directional Micro-Laue Diffraction Mapping to Observe Kink Deformation in Long-Period Stacking-Ordered Mg–Zn–Y Alloys under Compression, Mater. Trans. 64 (2023) 716–719. doi:10.2320/matertrans.MT-MD2022001
- 131) K. Hagihara, T. Tokunaga, K. Yamamoto, M. Yamasaki, T. Mayama, T. Shioyama, Y. Kawamura and T. Nakano: Unified Understanding of Strengthening Mechanisms Acting in Mg/LPSO Two-Phase Extruded Alloys with Varying LPSO Phase Volume Fraction, Mater. Trans. 64 (2023) 720–729. doi:10.2320/matertrans.MT-MD2022002
- 132) M. Yuasa, R. Sato, T. Hoshino, D. Ando, Y. Todaka, H. Miyamoto and H. Somekawa: Microstructure Evolution and Local Hardness of Mg–Y–Zn Alloys Processed by ECAE, Mater. Trans. 64 (2023) 730–734. doi:10.2320/matertrans.MT-MD2022018
- 133) T. Shiraiwa, N. Hamada, F. Briffod, M. Enoki and K. Hagihara: Synchronized Formation of Kink Bands in Al/Al2Cu Mille-Feuille Structured Alloy, Mater. Trans. 64 (2023) 735–743. doi:10.2320/matertrans.MT-MD2022005
- 134) N. Maki, Y. Miyajima and K. Ishikawa: Kink Formation and Strengthening Effects in TiNi–V Eutectic Alloys with Mille-Feuille Structure, Mater. Trans. 64 (2023) 744–749. doi:10.2320/matertrans.MT-MD2022008
- 135) K. Kimura, D. Egusa, K. Hagihara, N. Happo, N. Kawamura, H. Tajiri, K. Hayashi and E. Abe: Local Structural Analysis around Solute-Element in Annealed Mg99.2Zn0.2Y0.6 Alloy Using X-ray Fluorescence Holography, Mater. Trans. 64 (2023) 750–755. doi:10.2320/matertrans.MT-MD2022009
- 136) S. Harjo, W. Gong, K. Aizawa, T. Kawasaki, M. Yamasaki, T. Mayama and Y. Kawamura: Effect of Extrusion Ratio in Hot-Extrusion on Kink Deformation during Compressive Deformation in an αMg/LPSO Dual-Phase Magnesium Alloy Monitored by In Situ Neutron Diffraction, Mater. Trans. 64 (2023) 766–773. doi:10.2320/matertrans.MT-MD2022004
- 137) H. Okuda, Y. Maegawa, K. Shimotsuji, S. Inoue, Y. Kawamura and S. Kimura: Microstructure Evolution in Mg98.6Y1Zn0.4 Alloys and the Development by Hot Deformation Examined by Synchrotron Radiation Small- and Wide-Angle Scattering, Mater. Trans. 64 (2023) 780–784. doi:10.2320/matertrans.MT-MD2022007
- 138) K. Mizutani, Y. Nawa and T. Hasebe: Kink Modeling and Simulations Based on Field Theory of Multiscale Plasticity (FTMP) Part I: Explicit Kink Model and Double Compression Test, Mater. Trans. 64 (2023) 785–794. doi:10.2320/matertrans.MT-MD2022016
- 139) T. Hasebe and K. Mizutani: Kink Modeling and Simulations Based on Field Theory of Multiscale Plasticity (FTMP) Part II: Implicit Kink Model and Scale-Free Treatment, Mater. Trans. 64 (2023) 795–804. doi:10.2320/matertrans.MT-MD2022017
- 140) Y. Shirakami, K. Ikeda, S. Miura, K. Morita, T.S. Suzuki and Y. Sakka: Orientation Dependence of High Temperature Compressive Behavior of Textured Ti3SiC2, Mater. Trans. 64 (2023) 805–812. doi:10.2320/matertrans.MT-MD2022012
- 141) M. Itakura, M. Yamaguchi, D. Egusa and E. Abe: DFT Calculation of High-Angle Kink Boundary in 18R-LPSO Alloy, Mater. Trans. 64 (2023) 813–816. doi:10.2320/matertrans.MT-MD2022010
- 142) R. Matsumura, Y. Shinohara and T. Inamura: Numerical Analysis of Disclinations in Connecting Kink Bands Formed by Multiple Basal Shear, Mater. Trans. 64 (2023) 817–826. doi:10.2320/matertrans.MT-MD2022020
- 143) M. Yamazaki, K. Ishikawa, T. Fujii and Y. Miyajima: Effects of a Preannealing Process on the Morphology of Developed Kinks in Mille-Feuille Structured Cu/A5052 Alloy Fabricated by Accumulative Roll Bonding: Criteria for Kink Formation, Mater. Trans. 64 (2023) 827–834. doi:10.2320/matertrans.MT-MD2022003
- 144) H. Inui: PREFACE, Mater. Trans. 65 (2024) 987. doi:10.2320/matertrans.MPR2024901
- 145) H. Inui, K. Kishida and Z. Chen: Recent Progress in Our Understanding of Phase Stability, Atomic Structures and Mechanical and Functional Properties of High-Entropy Alloys, Mater. Trans. 63 (2022) 394–401. doi:10.2320/matertrans.MT-M2021234
- 146) T. Tsuru: Origin of Excellent Strength-Ductility Balance Unique to FCC High-Entropy Alloys: A Plaston-Based Mechanism Derived from Electronic Structure Calculations, Mater. Trans. 65 (2024) 988–994. doi:10.2320/matertrans.MT-MA2024003
- 147) S. Futami, Y. Ikeda, H.F. Zhao, Y. Umemoto, T. Honda and M. Fujita: Search for Significant Short-Range Ordering in Medium-Entropy Alloys Tr-Co-Ni (Tr = Cr, Mn, and Fe), Mater. Trans. 65 (2024) 995–1000. doi:10.2320/matertrans.MT-MA2024007
- 148) K. Nakano, D. Takeuchi, T. Teramoto and K. Tanaka: Effective Atomic Radii of Constituent Elements and Their Temperature Dependence in Quaternary and Ternary Subset Alloys Derived from CrMnFeCoNi High-Entropy Alloy, Mater. Trans. 65 (2024) 1001–1007. doi:10.2320/matertrans.MT-MA2024004
- 149) N. Gerel-Erdene and Y. Aoyagi: Crystal Plasticity Finite Element Simulation Considering Geometrically Necessary Dislocation Distribution for Reproducing Mechanical Anisotropy of Rolled CrMnFeCoNi High-Entropy Alloy, Mater. Trans. 65 (2024) 1008–1014. doi:10.2320/matertrans.MT-MA2024006
- 150) T. Yamashita, R. Gholizadeh, S. Yoshida and N. Tsuji: Effect of Deformation and Subsequent Heat Treatment on Sigma-Phase Precipitation and Mechanical Property of CoCrFeMnNi High Entropy Alloy, Mater. Trans. 65 (2024) 1015–1024. doi:10.2320/matertrans.MT-MA2024005
- 151) M. Enoki and H. Ohtani: Relationship between Lattice Strain and Ordering Tendency in Medium-Entropy Alloys, Mater. Trans. 65 (2024) 1025–1033. doi:10.2320/matertrans.MT-MA2024011
- 152) T. Kawamata, T. Ban, M. Shibata, H. Murayama, A. Yasuhara, K. Yubuta and K. Sugiyama: Fcc-Based Superstructure in CrCoNi System Induced by Annealing of Amorphous Cr-Co-Ni-Si-B-P Alloy, Mater. Trans. 65 (2024) 1034–1040. doi:10.2320/matertrans.MT-MA2024008
- 153) T. Nagase, M. Todai, S. Ichikawa, A. Matsugaki and T. Nakano: Alloy Design and Solidification Microstructure of Ti-Zr-Hf-Ag-V Multi-Component Alloys with a Dual Bcc Structure, Mater. Trans. 65 (2024) 1041–1048. doi:10.2320/matertrans.MT-MA2024009
- 154) L. Li, Z. Chen, K. Kishida and H. Inui: Formation of Stacking Fault Tetrahedra and Diffuse Streaks along ⟨111⟩ in the Equiatomic Cr-Co-Ni Medium-Entropy Alloy, Mater. Trans. 65 (2024) 1049–1054. doi:10.2320/matertrans.MT-MA2024001
- 155) M. Tanaka, S. Yamasaki and T. Morikawa: Strain Rate Dependence of Slip Persistence in TiZrNbHfTa Investigated with Microcantilever Bending Tests, Mater. Trans. 65 (2024) 1055–1060. doi:10.2320/matertrans.MT-MA2024010
- 156) K. Edalati and Z. Horita: PREFACE, Mater. Trans. 64 (2023) 1271. doi:10.2320/matertrans.MPR2023905
- 157) A.P. Carvalho and R.B. Figueiredo: An Overview of the Effect of Grain Size on Mechanical Properties of Magnesium and Its Alloys, Mater. Trans. 64 (2023) 1272–1283. doi:10.2320/matertrans.MT-MF2022005
- 158) J. Gubicza and P.T. Hung: Nanostructuring of Multi-Principal Element Alloys by Severe Plastic Deformation: from Fundamentals to an Improved Functionality, Mater. Trans. 64 (2023) 1284–1298. doi:10.2320/matertrans.MT-MF2022013
- 159) T.G. Langdon: Overview: Using Severe Plastic Deformation in the Processing of Superplastic Materials, Mater. Trans. 64 (2023) 1299–1305. doi:10.2320/matertrans.MT-MF2022021
- 160) A.M. Jorge, Jr., V. Roche, D.A.G. Pérez and R.Z. Valiev: Nanostructuring Ti-Alloys by HPT: Phase Transformation, Mechanical and Corrosion Properties, and Bioactivation, Mater. Trans. 64 (2023) 1306–1316. doi:10.2320/matertrans.MT-MF2022014
- 161) D.M. Marulanda Cardona and F.E. Castillejo Nieto: An Overview on the Corrosion Behavior of Steels Processed by Severe Plastic Deformation Mater. Trans. 64 (2023) 1317–1324. doi:10.2320/matertrans.MT-MF2022030
- 162) V. Beloshenko, A. Vozniak and A. Voznyak: Equal Channel Angular Extrusion of Polymers: Structural Changes and Their Effects on Properties, Mater. Trans. 64 (2023) 1325–1330. doi:10.2320/matertrans.MT-MF2022017
- 163) G. Wilde, H. Rösner and S. Divinski: Internal Interfaces in Severely Deformed Metals and Alloys: Coupling of Kinetics, Structure and Strain with Properties and Performance, Mater. Trans. 64 (2023) 1331–1345. doi:10.2320/matertrans.MT-MF2022009
- 164) M.W. Kapp, A. Hohenwarter, A. Bachmaier, T. Müller and R. Pippan: SPD Deformation of Pearlitic, Bainitic and Martensitic Steels, Mater. Trans. 64 (2023) 1353–1363. doi:10.2320/matertrans.MT-MF2022027
- 165) Y. Takizawa and Z. Horita: Incremental Feeding High-Pressure Sliding (IF-HPS) Process for Upscaling Highly Strained Areas in Metallic Materials with Enhanced Mechanical Properties, Mater. Trans. 64 (2023) 1364–1375. doi:10.2320/matertrans.MT-MF2022025
- 166) J. Zhong, F. Zhang, X. Tong, X. Hu and B. Wang: Hydrolytic Hydrogen Production from Severely Plastic Deformed Aluminum-Based Materials: An Overview, Mater. Trans. 64 (2023) 1376–1386. doi:10.2320/matertrans.MT-MF2022023
- 167) Á. Révész and M. Gajdics: The Effect of Severe Plastic Deformation on the Hydrogen Storage Properties of Metal Hydrides, Mater. Trans. 64 (2023) 1387–1400. doi:10.2320/matertrans.MT-MF2022019
- 168) V.V. Popov, E.N. Popova and E.V. Osinnikov: Specific Features of Grain Boundaries in Nickel Processed by High-Pressure Torsion, Mater. Trans. 64 (2023) 1401–1409. doi:10.2320/matertrans.MT-MF2022012
- 169) S. Kuramoto, Y. Kawano, Y. Mori, J. Kobayashi, S. Emura and T. Sawaguchi: Mechanical Properties and Deformation Behavior in Severely Cold-Rolled Fe–Ni–Al–C Alloys with Lüders Deformation —Overview with Recent Experimental Results—, Mater. Trans. 64 (2023) 1410–1418. doi:10.2320/matertrans.MT-MF2022024
- 170) H. Miyamoto: Revealing What Enhance the Corrosion Resistance beside Grain Size in Ultrafine Grained Materials by Severe Plastic Deformation: Stainless Steels Case, Mater. Trans. 64 (2023) 1419–1428. doi:10.2320/matertrans.MT-MF2022034
- 171) C. Li, X. Li, Z. Fu, H. Pan, Y. Gong and X. Zhu: An Overview on Recent Works of Heterostructured Materials Fabricated by Surface Mechanical Attrition Treatment, Mater. Trans. 64 (2023) 1429–1440. doi:10.2320/matertrans.MT-MF2022016
- 172) E. Kobayashi, M. Ohnuma, S. Kuramoto, J. Kobayashi and G. Itoh: Nanoscale Analysis of Solute Distribution in Ultrahigh-Strength Aluminum Alloys, Mater. Trans. 64 (2023) 1441–1448. doi:10.2320/matertrans.MT-MF2022032
- 173) Z. Li, Y. Liu, J.T. Wang and T.G. Langdon: Tube High-Pressure Shearing: A Simple Shear Path to Unusual Microstructures and Unprecedented Properties, Mater. Trans. 64 (2023) 1449–1463. doi:10.2320/matertrans.MT-MF2022051
- 174) O. Renk and R. Pippan: Anneal Hardening in Single Phase Nanostructured Metals, Mater. Trans. 64 (2023) 1464–1473. doi:10.2320/matertrans.MT-MF2022029
- 175) Y. Mine: Micro-Mechanical Characterisation of Hydrogen Embrittlement and Fatigue Crack Growth Behaviours in Metastable Austenitic Stainless Steels with Microstructure Refinement, Mater. Trans. 64 (2023) 1474–1488. doi:10.2320/matertrans.MT-MF2022041
- 176) Y. Ivanisenko: Perspectives of Scaling up of Severe Plastic Deformation: A Case of High Pressure Torsion Extrusion, Mater. Trans. 64 (2023) 1489–1496. doi:10.2320/matertrans.MT-MF2022057
- 177) M. Zohrevand, A.R. Rezaei, M.R. Sabour, E. Taherkhani and G. Faraji: Recent Progress on SPD Processes Empowered by Hydrostatic Pressure, Mater. Trans. 64 (2023) 1663–1672. doi:10.2320/matertrans.MT-MF2022007
- 178) R. Floriano and K. Edalati: Effects of Severe Plastic Deformation on Advanced Biomaterials for Biomedical Applications: A Brief Overview, Mater. Trans. 64 (2023) 1673–1682. doi:10.2320/matertrans.MT-MF2022043
- 179) M. Kawasaki, J.K. Han, X. Liu, S.C. Moon and K.D. Liss: Synchrotron High-Energy X-ray & Neutron Diffraction, and Laser-Scanning Confocal Microscopy: In-Situ Characterization Techniques for Bulk Nanocrystalline Metals, Mater. Trans. 64 (2023) 1683–1694. doi:10.2320/matertrans.MT-MF2022022
- 180) T. Grosdidier, M. Novelli and L. Weiss: Surface Severe Plastic Deformation for Improved Mechanical/Corrosion Properties and Further Applications in the Bio-Medical and Hydrogen Sectors, Mater. Trans. 64 (2023) 1695–1708. doi:10.2320/matertrans.MT-MF2022040
- 181) K. Bryła and J. Horky: Magnesium Alloys Processed by Severe Plastic Deformation (SPD) for Biomedical Applications: An Overview, Mater. Trans. 64 (2023) 1709–1723. doi:10.2320/matertrans.MT-MF2022056
- 182) M. Demirtas and G. Purcek: An Overview of the Principles of Low-Temperature Superplasticity in Metallic Materials Processed by Severe Plastic Deformation, Mater. Trans. 64 (2023) 1724–1738. doi:10.2320/matertrans.MT-MF2022018
- 183) Z. Sun, J. Zhou and D. Retraint: Mechanical Properties of Metallic Materials Processed by Surface Severe Plastic Deformation, Mater. Trans. 64 (2023) 1739–1753. doi:10.2320/matertrans.MT-MF2022028
- 184) J.E. González-Hernández and J.M. Cubero-Sesin: Electrical Conductivity of Ultrafine-Grained Cu and Al Alloys: Attaining the Best Compromise with Mechanical Properties, Mater. Trans. 64 (2023) 1754–1768. doi:10.2320/matertrans.MT-MF2022046
- 185) W. Skrotzki and R. Chulist: Severe Plastic Deformation of High-Entropy Alloys, Mater. Trans. 64 (2023) 1769–1783. doi:10.2320/matertrans.MT-MF2022050
- 186) M. Ashida: Effects of High-Pressure Torsion on Mechanical Properties of Biocompatible Ti–6Al–7Nb Alloy, Mater. Trans. 64 (2023) 1784–1790. doi:10.2320/matertrans.MT-MF2022045
- 187) J.A. Muñoz, T. Khelfa, D. Gheorghe, O.F. Higuera, P. Rodriguez and J.M. Cabrera: Microstructure Characterization of Metallic Materials Processed by Equal Channel Angular Pressing (ECAP): An Electron Backscatter Diffraction (EBSD) Analysis, Mater. Trans. 64 (2023) 1791–1805. doi:10.2320/matertrans.MT-MF2022042
- 188) L. Romero-Resendiz, M. Naeem and Y.T. Zhu: Heterostructured Materials by Severe Plastic Deformation: Overview and Perspectives, Mater. Trans. 64 (2023) 2346–2360. doi:10.2320/matertrans.MT-MF2022010
- 189) H. Sena and M. Fuji: Band Gap Engineering of Semiconductors and Ceramics by Severe Plastic Deformation for Solar Energy Harvesting, Mater. Trans. 64 (2023) 1497–1503. doi:10.2320/matertrans.MT-MF2022004
- 190) H. Miura, W. Nakamura and C. Watanabe: Basic Research on Multi-Directional Forging of AZ80Mg Alloy for Fabrication of Bulky Mechanical Components, Mater. Trans. 64 (2023) 1504–1514. doi:10.2320/matertrans.MT-MF2022033
- 191) X. Jian, J. Li, L. He, H.W. Li, M. Zhang, P. Zhang and H.J. Lin: Severe Plastic Deformation for Advanced Electrocatalysts for Electrocatalytic Hydrogen Production, Mater. Trans. 64 (2023) 1515–1525. doi:10.2320/matertrans.MT-MF2022011
- 192) H. Shahmir, M.S. Mehranpour, M. Kawasaki and T.G. Langdon: Superplasticity in Severely Deformed High-Entropy Alloys, Mater. Trans. 64 (2023) 1526–1536. doi:10.2320/matertrans.MT-MF2022008
- 193) L. Weissitsch, F. Staab, K. Durst and A. Bachmaier: Magnetic Materials via High-Pressure Torsion of Powders, Mater. Trans. 64 (2023) 1537–1550. doi:10.2320/matertrans.MT-MF2022026
- 194) D.H. Lee, I.C. Choi, M. Kawasaki, T.G. Langdon and J. Jang: A Review of Recent Research on Nanoindentation of High-Entropy Alloys Processed by High-Pressure Torsion, Mater. Trans. 64 (2023) 1551–1565. doi:10.2320/matertrans.MT-MF2022015
- 195) V. Sklenicka, P. Kral, J. Dvorak, M. Kvapilova and K. Kucharova: Creep in Nanostructured Materials, Mater. Trans. 64 (2023) 1566–1574. doi:10.2320/matertrans.MT-MF2022035
- 196) L. He, X. Shi, X. Li, J. Huang, T. Cheng, X. Wang, Y. Li, H. Lin, K. Edalati and H.W. Li: Severe Plastic Deformation through High-Pressure Torsion for Preparation of Hydrogen Storage Materials -A Review, Mater. Trans. 64 (2023) 1575–1584. doi:10.2320/matertrans.MT-MF2022039
- 197) E. Tabachnikova, T. Hryhorova, S. Shumilin, Y. Semerenko, Y. Huang and T.G. Langdon: Cryo-Severe Plastic Deformation, Microstructures and Properties of Metallic Nanomaterials at Low Temperatures, Mater. Trans. 64 (2023) 1806–1819. doi:10.2320/matertrans.MT-MF2022037
- 198) B. Straumal, A. Gornakova, G. Davdian, A. Mazilkin, Ł. Gondek, M. Szczerba and A. Korneva: Review - Phase Transitions in Ti Alloys Driven by the High Pressure Torsion, Mater. Trans. 64 (2023) 1820–1832. doi:10.2320/matertrans.MT-MF2022044
- 199) M.Y. Murashkin, N.A. Enikeev and X. Sauvage: Potency of Severe Plastic Deformation Processes for Optimizing Combinations of Strength and Electrical Conductivity of Lightweight Al-Based Conductor Alloys, Mater. Trans. 64 (2023) 1833–1843. doi:10.2320/matertrans.MT-MF2022048
- 200) N.Q. Chinh, D. Olasz, A.Q. Ahmed, E.V. Bobruk and R.Z. Valiev: Review on Grain Size- and Grain Boundary Phenomenon in Unusual Mechanical Behavior of Ultrafine-Grained Al Alloys, Mater. Trans. 64 (2023) 1844–1855. doi:10.2320/matertrans.MT-MF2022020
- 201) Y. Beygelzimer, Y. Estrin and R. Kulagin: Some Unresolved Problems of High-Pressure Torsion, Mater. Trans. 64 (2023) 1856–1865. doi:10.2320/matertrans.MT-MF2022038
- 202) V.I. Levitas: Recent In Situ Experimental and Theoretical Advances in Severe Plastic Deformations, Strain-Induced Phase Transformations, and Microstructure Evolution under High Pressure, Mater. Trans. 64 (2023) 1866–1878. doi:10.2320/matertrans.MT-MF2022055
- 203) N. Kudriashova and J. Huot: Effect of Cold Rolling on Magnesium-Based Metal Hydrides, Mater. Trans. 64 (2023) 1879–1885. doi:10.2320/matertrans.MT-MF2022058
- 204) D. Fruchart, N. Skryabina, P. Rango, M. Fouladvind and V. Aptukov: Severe Plastic Deformation by Fast Forging to Easy Produce Hydride from Bulk Mg-Based Alloys, Mater. Trans. 64 (2023) 1886–1893. doi:10.2320/matertrans.MT-MF2022049
- 205) Z. Horita, Y. Tang, T. Masuda, K. Edalati and Y. Higo: In Situ Synchrotron High-Pressure X-ray Analysis for ZnO with Rocksalt Structure, Mater. Trans. 64 (2023) 1585–1590. doi:10.2320/matertrans.MT-MF2022036
- 206) A. Lalpour, M. Mosallaee, A. Ashrafi and A. Zargaran: Microstructural Evolution in the Friction Stir Processed AA2024, Mater. Trans. 64 (2023) 1894–1901. doi:10.2320/matertrans.MT-MF2022006
- 207) Y. Tang, T. Fujii, S. Hirosawa, K. Matsuda, D. Terada and Z. Horita: Comparison of Mechanical Properties in Ultrafine Grained Commercial-Purity Aluminum (A1050) Processed by Accumulative Roll Bonding (ARB) and High-Pressure Sliding (HPS), Mater. Trans. 64 (2023) 1902–1911. doi:10.2320/matertrans.MT-MF2022047
- 208) K. Nagano, M. Kawabata-Ota, D. Nanya, H. Fujiwara, K. Ameyama, K. Edalati and Z. Horita: Unique Microstructure Evolution of HPT-Processed (α + γ) Two-Phase Stainless Steel, Mater. Trans. 64 (2023) 1912–1919. doi:10.2320/matertrans.MT-MF2022053
- 209) Z. Horita, Y. Tang, M. Matsuo, K. Edalati, M. Yumoto and Y. Takizawa: Enhancement of Activation and Hydrogen Storage Kinetics of TiFe(Mn) Using High-Pressure Sliding (HPS) Process, Mater. Trans. 64 (2023) 1920–1923. doi:10.2320/matertrans.MT-MF2022059
- 210) K. Edalati and Z. Horita: Recent Research Trends in Severe Plastic Deformation of Metallic and Non-Metallic Materials, Mater. Trans. 66 (2025) 450–461. doi:10.2320/matertrans.MT-M2024189
- 211) K. Edalati et al.: Severe plastic deformation for producing superfunctional ultrafine-grained and heterostructured materials: An interdisciplinary review, J. Alloy. Compd. 1002 (2024) 174667. doi:10.1016/j.jallcom.2024.174667
- 212) Y. Kawamura, T. Kiguchi, A. Vinogradov, Z. Horita, T. Mayama, H. Kitahara, T. Shiraishi, D. Banerjee, S. Suwas and K. Chattopadhyay: PREFACE, Mater. Trans. 66 (2025) 463. doi:10.2320/matertrans.MPR2025901
- 213) K. Edalati: Review of Advances in High-Pressure Torsion of Titanium and Ti-Based Materials (Alloys, Intermetallics, Oxides and High-Entropy Compounds), Mater. Trans. 66 (2025) 464–478. doi:10.2320/matertrans.MT-MC2024001
- 214) A. Banerjee, Z. Zhao, S. Balachandran, P. Eisenlohr and D. Banerjee: On the Plasticity of Bimodal Structures in Titanium Alloys, Mater. Trans. 66 (2025) 479–489. doi:10.2320/matertrans.MT-MC2024019
- 215) S. Sahay, P. Kesavan, M.K. Yadav, S. Nilawar, G. Manivasagam and K. Chatterjee: High-Pressure Torsion Affects Mechanical Properties, Electrochemical Behavior, and Cellular Response to a Biomedical Ti-Nb-Zr-Ta Alloy, Mater. Trans. 66 (2025) 490–500. doi:10.2320/matertrans.MT-MC2024013
- 216) S.T. Reddy, K.U. Yazar, S. Choudhary and S. Suwas: Micromechanical Response of Commercially Pure Titanium: Insights from Experiments and Crystal Plasticity Simulations, Mater. Trans. 66 (2025) 501–510. doi:10.2320/matertrans.MT-MC2024016
- 217) V. Chandravanshi, V. Singh, S. Suwas and A. Bhattacharjee: Superplastic Behavior of β Rich (α+β) Titanium Alloy SP-700 in Lower and Higher (α+β) Regions, Mater. Trans. 66 (2025) 511–520. doi:10.2320/matertrans.MT-MC2024011
- 218) A. Bisht, J. Subburaj, G. Jagadeesh and S. Suwas: Deformation Behavior of Commercially Pure Titanium Subjected to Blast Assisted Deformation: New Insights on {11-21} Extension Twinning, Mater. Trans. 66 (2025) 521–531. doi:10.2320/matertrans.MT-MC2024010
- 219) V.K. Sahu, S. Chandrakar, S. Jha and N.P. Gurao: Elucidating the Fracture Toughness of Additively Manufactured and Thermo-Mechanically Treated Ti6Al4V, Mater. Trans. 66 (2025) 532–541. doi:10.2320/matertrans.MT-MC2024006
- 220) T. Hirooka, H. Kitahara and S. Ando: Effect of Grain Size on Slip System Activity and Room Temperature Strain Aging in Commercially Pure Titanium Rolled Sheets, Mater. Trans. 66 (2025) 542–547. doi:10.2320/matertrans.MT-MC2024004
- 221) B.R. Anne, T. Morikawa, S. Yamasaki and M. Tanaka: Activation Enthalpy for Yielding in Fully-Lamellar Ti-6Al-4V, Mater. Trans. 66 (2025) 548–554. doi:10.2320/matertrans.MT-MC2024002
- 222) Q. Li, K. Matsugi, Z. Xu, Y. Choi and J. Yu: Application of Response Surface Methodology for Optimization the SPS Sintering Preparation Process of TiB2 Base Composites with Ni, Mater. Trans. 66 (2025) 555–560. doi:10.2320/matertrans.MT-MC2024009
- 223) M. Mito, K. Fukunaga, N. Nishiyama, K. Naragino, H. Kitahara, T. Masuda and Z. Horita: Electrical Conductivity (Resistivity) Measurement of ω Titanium, Mater. Trans. 66 (2025) 561–568. doi:10.2320/matertrans.MT-MC2024012
- 224) K.A. González-Jiménez, J.E. Gonzalez-Hernandez, J.M. Cubero-Sesin, M. Yumoto, Y. Takizawa and Z. Horita: Evaluating the Effect of Severe Plastic Deformation: High-Pressure Torsion and High-Pressure Sliding in Grade 2 Titanium, Mater. Trans. 66 (2025) 569–576. doi:10.2320/matertrans.MT-MC2024018
- 225) M. Nakai, T. Iwasaki, K. Kisaichi and K. Ueki: Effects of Dimple Surface Texturing on Wear Characteristics of Commercially Pure Ti in Comparison with Ti-6Al-4V ELI and Ti-29Nb-13Ta-4.6Zr Alloys for Dental Applications, Mater. Trans. 66 (2025) 577–583. doi:10.2320/matertrans.MT-MC2024003
- 226) Z. Horita, T. Masuda, S. Tanaka, M. Tokuda, K. Hokamoto, T. Shiraishi and T. Kiguchi: Effect of Shock Loading on ω Phase Formation in Pre-Strained Pure Titanium, Mater. Trans. 66 (2025) 584–589. doi:10.2320/matertrans.MT-MC2024020
- 227) M. Aghaahmadi, W.H. Kim, H. Lee, M.-S. Choi, J.S. Kim and J.H. Kim: Optimization of 75 mm Ultra-Thick Ti-6Al-4V Alloy Plates for Aerospace Applications: Microstructure and Mechanical Properties Analysis, Mater. Trans. 66 (2025) 590–599. doi:10.2320/matertrans.MT-MC2024007
- 228) T. Shiraishi, R. Takeda, N. Nagai and T. Kiguchi: Formation of Compositional Modulated Microstructure in Ti-Zr Binary Alloys, Mater. Trans. 66 (2025) 600–607. doi:10.2320/matertrans.MT-MC2024014
- 229) J. Qu, K. Matsugi, Y. Choi, Z. Xu and J. Yu: Influences of Process Parameters and Addition Elements on the Fabrication of TiC-Ti3SiC2 Composites by Spark Sintering, Mater. Trans. 66 (2025) 608–615. doi:10.2320/matertrans.MT-MC2024008
- 230) T. Sawahata, N. Nishiyama, M. Arita, Y. Kawabata, M. Matsushita, K. Ohara, Y. Higo, F. Wakai and Z. Horita: High Compressive Strength of Bulk Polycrystalline ω Phase in Pure Titanium, Mater. Trans. 66 (2025) 616–621. doi:10.2320/matertrans.MT-MC2024015
- 231) S. Okano, Y. Toshinari, Y. Hisamori and S. Kobayashi: Variation of Cu Distribution in Surface Oxide Layer of Ti-Cu Alloy with Heat Treatments, Mater. Trans. 66 (2025) 622–628. doi:10.2320/matertrans.MT-MC2024017
- 232) Q. Li, K. Matsugi, H. Kuramoto, Y. Choi, Z. Xu and J. Yu: Spark Sintering Behaviors of TiB2-10Ni with Elementary Bimodal TiB2 Powders, Mater. Trans. 66 (2025) 629–635. doi:10.2320/matertrans.MT-MC2024021