MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678

This article has now been updated. Please use the final version.

Simultaneous Prediction of Bendability and Deep Drawability Using Orientation Distribution Function for Aluminum Alloy Sheets
Hirofumi Inoue
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: L-M2017857

Details
Abstract

Sheet metal formability is generally affected by crystallographic texture. In particular, bendability and deep-drawability of aluminum and its alloys are closely related to the recrystallization texture of the rolled sheets. It is necessary to quantitatively predict them from a viewpoint of texture control. This paper described a method for simultaneous prediction of both the bendability and the deep-drawability on the basis of the average Taylor factor as a polycrystal calculated by using an orientation distribution function. The normalized Taylor factor (Mn-value) and the r-value were used as measures of bendability and deep-drawability, respectively. The predicted results from ideal orientations demonstrated that {001}<100> orientation had excellent bendability and poor deep-drawability, whereas {111}<110> orientation had poor bendability and excellent deep-drawability. The predicted results for some aluminum alloys suggested that conventional cold-rolled and annealed sheets would be favorable to bendability, and the addition of asymmetric warm rolling after cold rolling would lead to improved deep-drawability.

Content from these authors
© 2018 The Japan Institute of Light Metals
feedback
Top